
Fossil Version Control

A Users Guide

Jim Schimpf

Document Number: PAN-20100424

Revision Number: 1.80

15 November 2016

Pandora Products.

215 Uschak Road

Derry, PA 15627

Fossil Version Control

A Users Guide

2010 Pandora Products. This work is licensed under the Creative Commons Attribution-Share Alike
3.0 United States License. To view a copy of this license, visit http://creativecommons.
org/licenses/by-sa/3.0/us/ or send a letter to Creative Commons, 171 Second Street,
Suite 300, San Francisco, California, 94105, USA.

and Pandora Products

215 Uschak Road

Derry, PA 15627

Phone: 724.539.1276

Fax: 724.539.1276

Web: http://www.fossil-scm.org/schimpf-book/index

Email: jim.schimpf@gmail.com

Pandora Products has carefully checked the information in this document and believes it to be accu-
rate. However, Pandora Products assumes no responsibility for any inaccuracies that this document
may contain. In no event will Pandora Products be liable for direct, indirect, special, exemplary,
incidental, or consequential damages resulting from any defect or omission in this document, even
if advised of the possibility of such damages.

In the interest of product development, Pandora Products reserves the right to make improvements
to the information in this document and the products that it describes at any time, without notice or
obligation.

Additional Contributors

• Marilyn Noz - Editor

• Wolfgang Stumvoll - Fossil Merge use and Windows use

• javalinBCD@gmail.com - found bugs

• arnel_legaspi@msn.com - found bugs

PAN-20100424

Revision: 1.80

15 November 2016 ii

http://creativecommons.org/licenses/by-sa/3.0/us/
http://creativecommons.org/licenses/by-sa/3.0/us/

Fossil Version Control

A Users Guide

Document Revision History

Use the following table to track a history of this documents revisions. An entry should be made into

this table for each version of the document.

Version Author Description Date
0.1 js Initial Version 24-Apr-2010
0.2 js Finishing up Single User Chapter 27-Apr-2010
0.3 js Working on introduction chapter 30-Apr-2010
0.4 js Adding multiuser chapter 1-May-2010
0.5 mn Adding editorial corrections [ebf40b842a] 4-May-2010
0.6 js Adding Command sections [e11399d575] 8-May-2010
0.7 js English & spelling corrections 19-May-2010
0.8 js Spelling fixes 30-May-2010
0.9 ws Using Fossil merge [db6c734300] 2-Jun-2010
1.0 js/ws Put Fossil merge first in handling fork 3-Jun-2010
1.1 mn Fixes in multiple user chapter [e8770d3172] 4-Jun-2010
1.2 js Start advanced use chapter [2abc23dae5] 4-Jun-2010
1.3 mn English corrections Chapter 1 [8b324dc900] 5-Jun-2010
1.4 mn Sections 2.1 & 2.2 corrections [0b34cb6f04] 7-Jun-2010
1.5 js Move close leaf to adv use [2abc23dae5] 7-Jun-2010
1.6 js Convert Advanced chapter to forks and branching 13-Jun-2010
1.7 js/tr Add note about IP port usage [a62efa8eba] 8-Jul-2010
1.71 javelin Check on mispelling section 1.1 [637d974f62] 15-Sep-2011
1.72 anon Fix absolute path in image regs [d54868853b] 15-Sep-2011
1.73 anon Fix fossil create section 2.2.5 [36772d90a5] 15-Sep-2011
1.74 anon Push/Pull described incorrectly [1b930fced6] 15-Sep-2011
1.75 arnel Commands might be changed [4aaf1f78bb] 15-Sep-2011
1.76 js Handle tickets [6477027434], [9274528931] and

[837310e00a]
2-Nov-2013

1.77 js Handle [0c9ebf37b7] with better explaination 3-Nov-2013
1.78 js Chapter on Chiselapp [137b3f918c] 3-Nov-2013
1.79 js Update on Chiselapp chapter 28-Dec-2014
1.80 js Update to Fossil 1.36 15-Dec-2016

PAN-20100424

Revision: 1.80

15 November 2016 iii

Fossil Version Control

A Users Guide

Contents

1 Source Control & Why you need it 5

1.1 What is it . 5

1.2 Why do it ? . 6

1.2.1 How to get it . 6

1.3 Source control description . 6

1.3.1 Check out systems . 6

1.3.2 Merge systems . 7

1.3.3 Distributed systems . 7

1.3.4 Common Terms . 7

2 Single User Fossil Use 8

2.1 Introduction . 8

2.2 Creating a repository . 8

2.2.1 Introduction . 8

2.2.2 Create Repository . 9

2.2.3 Connect Repository . 9

2.2.4 Add and Initial Commit . 10

2.2.5 Fossil start up summary . 10

2.3 Set Up User interface . 11

2.3.1 User interface summary . 14

2.4 Update Repository . 15

2.4.1 Update Summary . 17

2.5 Tickets . 18

2.5.1 Ticket Summary . 23

2.6 Wiki Use . 23

2.6.1 Wiki Summary . 27

3 Multiple Users 27

3.1 Introduction . 27

3.2 Setup . 27

3.2.1 Server Setup . 28

PAN-20100424

Revision: 1.80

15 November 2016 iv

Fossil Version Control

A Users Guide

3.2.1.1 Self hosted . 28

3.2.1.2 Server hosted . 29

3.2.1.3 CGI Script for hosted server . 29

3.2.2 The test (either self hosted or server hosted) 30

3.3 User Accounts . 30

3.4 Multiple User Operation . 32

3.4.1 Cloning . 32

3.4.2 Keeping in sync . 33

3.4.3 Complications . 35

3.4.4 Fixing the Update file . 36

3.4.5 Fixing the Merge file . 38

4 Forks & Branches 39

4.1 Introduction . 39

4.2 Forks, Branch & Merge . 40

4.2.1 Marilyn’s Actions . 40

4.2.2 Jim’s Actions . 41

4.2.3 Fixing the fork . 42

4.2.4 Commands used . 44

4.3 Merge without fork . 45

4.3.1 Check in attempt . 45

4.3.2 Update . 45

4.3.3 Commands used . 46

4.4 Branching . 47

4.4.1 Introduction . 47

4.4.2 Branch the repository . 47

4.4.3 Color Setup . 49

4.4.4 Check out the branches . 50

4.4.5 Correcting errors (in both) . 51

4.4.6 Commands used . 53

PAN-20100424

Revision: 1.80

15 November 2016 v

Fossil Version Control

A Users Guide

5 Fossil Commands 53

5.1 Introduction . 53

5.2 Basic Commands . 53

5.2.1 help . 53

5.2.2 add . 54

5.2.3 addremove . 55

5.2.4 rm or delete or forget . 56

5.2.5 rename or mv . 58

5.2.6 status . 58

5.2.7 changes . 59

5.2.8 extra . 59

5.2.9 revert . 61

5.2.10 update . 62

5.2.11 checkout or co . 63

5.2.12 undo . 63

5.2.13 diff . 64

5.2.14 gdiff . 66

5.2.15 ui . 66

5.2.16 server . 69

5.2.17 commit or ci . 71

5.3 Maintenance commands . 73

5.3.1 new . 73

5.3.2 clone . 74

5.3.3 open . 76

5.3.4 close . 76

5.3.5 version . 77

5.3.6 rebuild . 78

5.3.7 all . 79

5.3.8 push . 81

5.3.9 pull . 81

5.3.10 sync . 82

PAN-20100424

Revision: 1.80

15 November 2016 vi

Fossil Version Control

A Users Guide

5.3.11 clean . 83

5.3.12 branch . 85

5.3.13 merge . 85

5.3.14 tag . 86

5.3.15 settings . 88

5.4 Miscellaneous . 90

5.4.1 zip . 90

5.4.2 user . 90

5.4.3 finfo . 91

5.4.4 timeline . 93

5.4.5 wiki . 94

5.5 Advanced . 96

5.5.1 scrub . 96

5.5.2 search . 96

5.5.3 sha1sum . 97

5.5.4 configuration . 97

5.5.5 descendants . 99

6 Chiselapp 99

6.1 Create an account . 99

6.2 Repositories . 100

6.2.1 Create Repository . 100

6.2.2 Moving data . 102

6.2.3 Fixing Data . 102

6.2.4 Final Fixes . 104

6.2.5 Synching . 104

6.3 Final Result . 105

7 What’s next ? 105

PAN-20100424

Revision: 1.80

15 November 2016 vii

Fossil Version Control

A Users Guide

List of Figures

1 Create Repository . 9

2 Open Repository & Check . 9

3 Initial file add . 10

4 Initial Commit . 10

5 Starting Webserver . 11

6 Initial Webserver page . 12

7 Initial Configuration . 12

8 User Configuration . 13

9 Super User Setup . 14

10 Project Status . 15

11 Update for new files . 15

12 Timeline . 16

13 Timeline Detail . 17

14 Initial Ticket Window . 18

15 Ticket Form . 19

16 Viewing a Ticket . 20

17 Ticket List with open ticket . 20

18 Ticket resolving check-in . 21

19 Ticket Finish . 22

20 Blank Home Page . 23

21 Wiki controls . 24

22 Wiki Formatting . 25

23 Home page with edit . 25

24 Initial Home page . 26

25 Self-hosted Fossil repository . 28

26 Fossil CGI script . 29

27 My Fossil CGI script . 29

28 Copying script into place . 29

29 Web access to Fossil CGI hosted site . 30

30 New Editor user . 31

PAN-20100424

Revision: 1.80

15 November 2016 Page 1 of 107

Fossil Version Control

A Users Guide

31 Clone command . 32

32 Cloned repository checkin . 33

33 Update action . 34

34 Updated Timeline . 34

35 Forking commit . 35

36 Update dry run . 36

37 Update dry run, shorter . 36

38 Current Timeline . 37

39 Update fossilbook.pdf . 37

40 Forcing a commit under Windows . 38

41 Windows Forked timeline . 38

42 Fossil Merge . 38

43 Text differences . 39

44 Merged timeline . 39

45 Marilyn’s work . 40

46 Jim’s commit attempt . 41

47 Forcing the commit . 41

48 Repository Fork . 42

49 Merge Operation . 43

50 Commit after merge . 43

51 After merge timeline . 44

52 Marilyn’s Update . 44

53 Jim’s check in attempt . 45

54 Update dry run . 46

55 Merged repository . 46

56 Checking code status . 47

57 Branch commands . 48

58 Branch Timeline . 48

59 Setting Timeline color . 49

60 Check out VER_1.0 . 50

61 VER_2.0 checkout . 51

PAN-20100424

Revision: 1.80

15 November 2016 Page 2 of 107

Fossil Version Control

A Users Guide

63 Correcting both branches . 51

62 Fixing both branches . 52

64 Help run . 53

65 Help detail . 54

66 add detail . 55

68 rm detail . 56

67 addremove detail . 57

69 rename detail . 58

70 status run . 59

71 changes details . 60

72 extra details . 60

73 revert details . 61

74 update details . 62

75 checkout or co details . 63

76 undo details . 64

77 diff details . 65

78 gdiff details . 67

79 ui details . 68

80 server detail . 70

81 commit details . 72

82 new details . 74

83 clone details . 75

84 open details . 76

85 close details . 77

86 version details . 78

87 rebuild details . 79

88 all details . 80

89 push details . 81

90 pull details . 82

91 sync details . 83

92 clean details . 84

PAN-20100424

Revision: 1.80

15 November 2016 Page 3 of 107

Fossil Version Control

A Users Guide

93 branch details . 85

94 merge details . 86

95 tag details . 87

96 settings details . 89

97 zip detail . 90

98 user detail . 91

99 finfo detail . 92

100 timeline detail . 94

101 wiki detail . 95

102 scrub detail . 96

103 search detail . 97

104 sha1sum detail . 97

105 configuration detail . 98

106 descendants detail . 99

107 Chiselapp Home page . 100

108 Create New Repository . 101

109 Getting the project code . 101

110 Filled in form . 101

111 Success . 102

112 Sending the repository . 102

113 Initial Repository view . 102

114 Time Line view . 103

115 Shun initial check-in . 103

116 Set Configuration . 103

117 Home page fixed . 104

118 Orignal Link . 104

119 Fixed link . 104

PAN-20100424

Revision: 1.80

15 November 2016 Page 4 of 107

Fossil Version Control

A Users Guide

Foreward

This book was started in 2010 using a Dual processor Mac 550 MHz PowerPC running Mac OSX
10.5. Current revisions are now done on MacBook Pro (Intel) running MacOS 10.12.1 at 2.5GHz.
It was originally done using Fossil version 1.27 and now revisions to the book are using Fossil 1.36.
Because of this some of the pictures here will look slightly different in your copy of Fossil but the
maintainers have been careful to update the esthetics but not the functions of the various pages. So
you will see different, better looking pages but the functions will be the same.

1 Source Control & Why you need it

1.1 What is it

A source control system is software that manages the files in a project. A project (like this book or a
software application) usually has a number of files. You then put all these files in a directory and at
times subdivide even that with subdirectories. At any particular time this set of files in their present
edited state make up a working version of the project. If other people are using the project you give
them this and as is usually the case, they find problems and you fix them. This results in another
version of the project slightly changed which goes through the cycle again. (This is why books have
editions and software has versions...)

Software developers on large projects with multiple developers could see this cycle and realized
they needed a tool to control the changes. With multiple developers sometimes the same file would
be edited by two different people changing it in different ways or records of what got changed would
be lost. It was hard to bring out a new release of the software and be sure that all the bugs were
fixed and enhancements made.

A tool called Source Code Control System [6] was developed at Bell Labs in 1972 to track changes
in files. It would remember each of the changes made to a file and store comments about why this
was done. It also limited who could edit the file so conflicting edits would not be done. [5]

This was important but developers could see more was needed. They needed to be able to save the
state of all the files in a project and give it a name (i.e., Release 3.14). As software projects mature
you will have a released version of the software being used as well as bug reports written against it,
while the next release of the software is being developed adding new features. The source control
system would have to handle what are now called branches. One branch has say Version 1 which is
released but continues to have fixes added to create Version 1.1, 1.2, etc. At the same time you also
have another branch which contains Version 2 with new features added under construction.

In 1986 the open source Concurrent Version Control system CVS [3] was developed. This system
could label groups of files and allow multiple branches (i.e. versions) simultaneously. There have
been many other systems developed since them some open source and some proprietary.

Fossil which was originally released in 2006 [4] is a easy to install version control system that also
includes a trouble ticketing system (Figure 17 on page 20), a wiki (Figure 2.6 on page 23) and self
hosted web server (Figure 5 on page 11). It’s home page is here http://www.fossil-scm.
org/.

PAN-20100424

Revision: 1.80

15 November 2016 Page 5 of 107

http://www.fossil-scm.org/
http://www.fossil-scm.org/

Fossil Version Control

A Users Guide

1.2 Why do it ?

Why do you want to use a source control system? To use one restricts your freedom, you won’t
be able to create files, delete files or, move files between directories at random. Making changes in
your code becomes a check list of steps that must be followed carefully.

With all those hassles why do it? The biggest answer is freedom (huh ?). By following the pro-
cedures of a source control system you gain the freedom to modify your code any way you want.
How does that follow ? One of the most horrible feelings as a developer is the “It worked yester-
day” syndrome. That is, you had code that worked just fine and now it doesn’t. You have a very
helpless feeling of how do you get back to working code. With a source control system and careful
adherence to procedures you can just go back in time and get yesterday’s code. Then, starting from
known good code you can figure out what happened.

Having a source control system also gives you the freedom to experiment, “let’s try that radical new
technique”, and if it doesn’t work it’s easy to just go back to the previous state.

The rest of this book is a user manual for the Fossil version control system that does code manage-
ment and much much more. It runs on multiple OS’s and is FREE. It is simple to install as it has
only one executable and the repositories it creates are a single file that is easy to back up and are
usually only 50% the size of the original source.

1.2.1 How to get it

If this has interested you then you can get a copy of the Fossil executable here http://www.
fossil-scm.org/download.html. There are Linux, Mac, and Windows executable links
on this page. Also there is a source Tarball from which you can compile from source. This web site
is self-hosted by Fossil itself (see Section 3 on page 27).

1.3 Source control description

This next section is useful if you have not used source control systems before. I will define some of
the vocabulary and explain the basic ideas of source control.

1.3.1 Check out systems

When describing the grandaddy of source control systems, like SCCS I said it managed the changes
for a single file and also prevented multiple people from working on the same file at the same time.
This is representative of a whole class of source control systems. In these you have the idea of
“checking-out” a file so you can edit it. At the same time while other people using the system can
see who is working on the file they are prevented from touching it. They can get a read-only copy so
they can say build software but only the “owner” can edit it. When done editing the “owner” checks
it back in then anyone else could work on on it. At the same time the system has recorded who had
it and the changes made to it.

PAN-20100424

Revision: 1.80

15 November 2016 Page 6 of 107

http://www.fossil-scm.org/download.html
http://www.fossil-scm.org/download.html

Fossil Version Control

A Users Guide

This system works well in small groups with real time communication. A common problem is that
a file is checked out by some one else and you have to make a change in it. In a small group setting,
just a shout over the cube wall will solve the problem.

1.3.2 Merge systems

In systems represented by CVS or Subversion the barrier is not getting a file to work on but putting
it back under version control. In these systems you pull the source code files to a working directory
in your area. Then you edit these files making necessary changes. When done you commit or check
them back into the repository. At this point they are back under version control and the system
knows the changes from the last version to this version.

This gets around the problem mentioned above when others are blocked from working on a file.
You now have the opposite problem in that more than one person can edit the same file and make
changes. This is handled by the check-in process. There only one person at a time may check in a
file. That being the case the system checks the file and if there are changes in repository file that are
NOT in the one to be checked in stops the check in process. The system will ask if the user wants to
merge these changes into his copy. Once that is done the new version of the file can be checked in.

This type of system is used on large projects like the Linux kernel or other systems where you have
a large number of geographically distributed contributors.

1.3.3 Distributed systems

The representatives of two major systems we have described thus far are centralized. That is there is
only one repository on a single server. When you get a copy of the files or check in files it all goes to
just one place. These work and can support many, many users. A distributed system is an extension
of this where it allows the repositories to be duplicated and has mechanisms to synchronize them.

With a single server users of the repository must be able to connect to it to get updates and for check
ins of new code. If you are not connected to the server you are stuck and cannot continue working.
Distributed systems allow you to have your own copy of the repository then continue working and
when back in communication synchronize with the server. This is very useful where people take
their work home and cannot access the company network. Each person can have a copy of the
repository and continue working and re-sync upon return to the office.

1.3.4 Common Terms

The following is a list of terms I will use when talking about version control or Fossil.

Repository This is the store when the version controlled files are kept. It will be managed by a
source control system

SCS Source control system, this is software that manages a group of files keeping track of changes
and allowing multiple users to modify them in a controlled fashion

PAN-20100424

Revision: 1.80

15 November 2016 Page 7 of 107

Fossil Version Control

A Users Guide

Commit In Fossil to store the current set of new and changed files into the repository.

Trunk The main line of code descent in a Fossil repository.

Branch A user defined split in the files served by an SCS. This allow multiple work points on the
same repository. Older branches (versions) might have bug fixes applied and newer branches
(versions) can have new features added.

Fork In Fossil an involuntary split in the code path, occurs when a file in the repository has changes
not in a file to be committed.

2 Single User Fossil Use

2.1 Introduction

If you have read this far and are at least persuaded to try, you will want to put one of your projects
under software control using Fossil. This chapter is set up to lead you through that task and show
you how to adapt your development to using this tool. The assumption is made in this section that
you will be the only person using the repository, you are the designer, developer, and maintainer
of this project. After you are comfortable using the tool, the next section will show how you use
it when you have multiple people working on a project. The rest of this book and most of the
pictures are based on Fossil version 1.27 [13ad130920] 2013-09-11 11:43:49 UTC, Then Fossil
version 1.36 [c24373934d] 2016-10-24 14:59:33 UTC (the latest as of this edit) was used for the
Fossil Commands chapter.

2.2 Creating a repository

2.2.1 Introduction

In the spirit of “eating one’s own dog food” we will use this book as the project we are going to
manage with Fossil. The book is a directory of text files (we are writing it using LYX [2]) and my
working area looks like this:

FOSSIL/

This directory holds all my Fossil repositories

FossilBook/

outline.txt - Book design
fossilbook.lyx - The book
Layout

fossil.png - The Fossil logo (image on title page)

Research

fossilbib.bib - Working bibliography
History

PAN-20100424

Revision: 1.80

15 November 2016 Page 8 of 107

Fossil Version Control

A Users Guide

CVC-grune.pdf - Historical paper about CVS
RCS-A System for Version Control.webloc - RCS bookmark
SCCS-Slideshow.pdf - Historical paper about SCCS
VCSHistory -pysyncwebloc - History of version control

This took just an hour or so to start preliminary research and build the framework. Since that’s about
all I’m going to do today I want to build a repository and put all this stuff under Fossil control.

2.2.2 Create Repository

I have a directory called FOSSIL in which I keep all my repositories, Fossil doesn’t care but it helps
me to keep them all in one place so I can back them up. First I need to create a new repository for
the book. This is done using the command line after I move into the Fossil book directory.

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil new ../FOSSIL/FossilBook.fossil
project-id: 2b0d35831c1a5b315d74c4fd8d532b100b822ad7
server-id: 0149388e5a3109a867332dd8439ac7b454f3f9dd
admin-user: jim (initial password is "ec3773")

Figure 1: Create Repository

I create my repositories with the extension .fossil, this will be useful later with the server command
(See Figure 80 on page 70). When the create happened it assigned an initial password with an admin
user of “jim” (i.e., me).

2.2.3 Connect Repository

The repository is created but is empty and has no connection to the book directory. The next step is
to open the repository to the book directory with the open command.

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil open ../FOSSIL/FossilBook.fossil
[Pandora-2:jschimpf/Public/FossilBook] jim% fossil status
repository: /Users/jschimpf/Public/FOSSIL/FossilBook.fossil
local-root: /Users/jschimpf/Public/FossilBook/
server-code: 0149388e5a3109a867332dd8439ac7b454f3f9dd
checkout: 279dfecd3f0322f236a92a9a8f3c96acf327d8c1 2010-04-25 12:40:39 UTC
tags: trunk
[Pandora-2:jschimpf/Public/FossilBook] jim% fossil extra
Layout/fossil.png
Research/History/CVS-grune.pdf
Research/History/RCS--A System for Version Control.webloc
Research/History/SCCS-Slideshow.pdf
Research/History/VCSHistory - pysync -webloc
Research/fossilbib.bib
fossilbook.lyx
outline.txt

Figure 2: Open Repository & Check

PAN-20100424

Revision: 1.80

15 November 2016 Page 9 of 107

Fossil Version Control

A Users Guide

The open command seemingly did nothing but checking with the status command shows the repos-
itory, the directory it’s linked to and that we are hooked to the trunk of the store.

The extra command shows all the files in the directory that are NOT under control of Fossil. In this
case that’s all of them since we have not checked in anything.

2.2.4 Add and Initial Commit

I must now add all the relevant files into the repository with the add command. The Fossil add
is recursive so if I add the top level files it will automatically recurse into the subdirectories like
Layout and Research and get those files too. Before you do an add it pays to tidy up your directory
so you don’t accidentally add a bunch of transient files (like object files from a compile). It’s easy
to remove them later but a little tidying before hand can save you some work.

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil add .
ADDED Layout/fossil.png
ADDED Research/History/CVS-grune.pdf
ADDED Research/History/RCS--A System for Version Control.webloc
ADDED Research/History/SCCS-Slideshow.pdf
ADDED Research/History/VCSHistory - pysyncwebloc
ADDED Research/fossilbib.bib
fossil: cannot add _FOSSIL_
ADDED fossilbook.lyx
ADDED outline.txt

Figure 3: Initial file add

I simply told fossil to do an add of the current directory (.) so it got all those files and all the files
in the subdirectory. Note the _FOSSIL_ that it didn’t add. This is the tag file that fossil keeps in a
directory so it knows what repository it belongs to. Fossil won’t add this file since it manages it, but
everything else is fair game.

One final thing before I can quit for the day, these files have been added or rather they will be added
to the repository when I commit it. That must be done and then we can relax and let Fossil manage
things.

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil commit -m "Initial Commit"
New_Version: 8fa070818679e1744374bc5302a621490276d739

Figure 4: Initial Commit

I added a comment on the commit and it’s a good idea to always do this. When later we see the
timeline of the commits you will have notes to tell you what was done.

2.2.5 Fossil start up summary

• fossil new <name> Creates a new fossil repository

PAN-20100424

Revision: 1.80

15 November 2016 Page 10 of 107

Fossil Version Control

A Users Guide

• fossil open <repository> While in a source directory connects this directory to the fossil
repository

• fossil add . Will add (recursively) all the files in the current directory and all subdirectories
to the repository

• fossil commit -m “Initial Commit” Will put all the currently added files into the repository.

2.3 Set Up User interface

One of the surprising features of Fossil is the web server. This allows it to have a GUI type user
interface with no operating system specific code, the GUI is the web browser supplied by your OS.
In the previous steps I checked my project in to a Fossil repository, next I have to prep the web
interface for production use.

NOTE The Fossil web server uses port 8080 instead of the standard port 80 for all HTTP access.
When run it will automatically start your Web browser and open the repository home page.
Unfortunately my book work is done on a machine that already has Apache running on port
8080 so I will be using port 8081. I will always have to add an extra parameter on the UI
command line to do this.

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil ui -port 8081

Figure 5: Starting Webserver

NOTE: Newer versions of Fossil automatically find an open port and will give a message on the
command line telling you what port number is used. You can still use the -port option if you
want to control the port #.

This shows how it’s started, as you can see I have picked port 8081 since I am locked out of port
8080. When I do this my browser starts and I am presented with the following home page.

PAN-20100424

Revision: 1.80

15 November 2016 Page 11 of 107

Fossil Version Control

A Users Guide

Figure 6: Initial Webserver page

Following the advice on the page I go to setup/config. I am going to do the minimum setup that
you should do on all projects. As you get familiar with Fossil you will probably have many more
things that you will customize for your taste but what follows are the only things you HAVE to do.

Figure 7: Initial Configuration

I have entered in a project name and put in a description, the project name will be the name of the
initial Wiki page (see 2.6 on page 23) and the description is useful for others to see what you are
doing here. Then I go to the bottom of the page and pick the Apply Changes button.

Next I pick the Admin tab (you can see it in the header bar) and the pick Users from that page. I am
presented with the users and will use this to set the password of the project.

PAN-20100424

Revision: 1.80

15 November 2016 Page 12 of 107

Fossil Version Control

A Users Guide

Figure 8: User Configuration

As you can see Fossil automatically configures a number of users beyond just the creator. The
anonymous user you have already seen if you went to the Fossil web site to download the code.
This user can view and get code but cannot commit code. On the right side of the page are the
many options you can give to a user, it’s worth reading it all when you set up your repository. The
important one is me (jim) which has “s” or Super User Capabilities. This means I can do anything
with the repository.

I will now edit the user Jim to make sure it has the settings I want. In this case you MUST set the
password. Remember way back where Fossil set it during the create (Figure 1 on page 9), it’s a very
good idea to change this to something you can remember rather than the original random one.

PAN-20100424

Revision: 1.80

15 November 2016 Page 13 of 107

Fossil Version Control

A Users Guide

Figure 9: Super User Setup

I have put in my contact information (e-mail address) and while you cannot see it I have typed in a
password that I will remember. Then I applied the changes.

Now the repository is ready for further work, it’s rather bare bones at this point but the most impor-
tant things are set up.

2.3.1 User interface summary

• fossil ui run in the source directory will start a browser based user interface to fossil.

PAN-20100424

Revision: 1.80

15 November 2016 Page 14 of 107

Fossil Version Control

A Users Guide

• fossil ui -port <IP port #> Can be used if port 8080 if already in use on your system.

• On the first run it is important to configure your project with a name and set the password for
yourself.

2.4 Update Repository

After writing the above section of the book I now have created a bunch of new files and changed
some of the existing files in the repository. Before quitting for the day I should add these new files
into the repository and commit the changes saving this milestone in the project.

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil extra
#fossilbook.lyx#
Images/Single_user/config_initial.epsf
Images/Single_user/initial_page.epsf
Images/Single_user/jim_setup.epsf
Images/Single_user/user_config.epsf
fossilbook.lyx~
[Pandora-2:jschimpf/Public/FossilBook] jim% fossil status
repository: /Users/jschimpf/Public/FOSSIL/FossilBook.fossil
local-root: /Users/jschimpf/Public/FossilBook/
server-code: 0149388e5a3109a867332dd8439ac7b454f3f9dd
checkout: 8fa070818679e1744374bc5302a621490276d739 2010-04-25 13:09:02 UTC
parent: 279dfecd3f0322f236a92a9a8f3c96acf327d8c1 2010-04-25 12:40:39 UTC
tags: trunk
EDITED fossilbook.lyx

Figure 10: Project Status

I run fossil extra to see these new files. The image files (those in Images/Single_user) I want to
add, the other two files, #fossilbook.lyx# and fossilbook.lyx~, I don’t want to add since they are
temporary artifacts of LYX. I also ran fossil status. This shows changes to files that are already in
the repository. There the only file changed is the book text itself, fossilbook.lyx.

All I have to do now is add in the directory Images which will add in the image files I want in the
repository. Then I commit the changes to the repository and we can move on to other tasks of the
day.

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil add Images
ADDED Images/Single_user/config_initial.epsf
ADDED Images/Single_user/initial_page.epsf
ADDED Images/Single_user/jim_setup.epsf
ADDED Images/Single_user/user_config.epsf
[Pandora-2:jschimpf/Public/FossilBook] jim% fossil commit -m "Initial setup with pictures"
New_Version: a2d12bf532a089ee53578e3e17c6e732c0442f49

Figure 11: Update for new files

After doing this commit I can bring up the Fossil ui (see Figure 5 on page 11) and view the project
Timeline by picking that tab on the Fossil header. We get this:

PAN-20100424

Revision: 1.80

15 November 2016 Page 15 of 107

Fossil Version Control

A Users Guide

Figure 12: Timeline

You can see all my check-ins thus far and you can see after the check-in from Figure 11 on the
preceding page I did another check-in because I missed some changes in the outline. The check-ins
are labeled with the first 10 digits of their hash value and these are active links which you can click
to view in detail what was changed in that version.

PAN-20100424

Revision: 1.80

15 November 2016 Page 16 of 107

Fossil Version Control

A Users Guide

Figure 13: Timeline Detail

I clicked on the very last check-in (the LEAF) and the display is shown above. There are many
things you can do at this point. From the list of changed files you can pick the diff link and it will
show in text form the changes made in that particular file. The “Other Links” section has a very
useful ZIP Archive. Clicking this will download a ZIP of this version to your browser. You will
find this useful if you want to get a particular version, in fact this is normally how you get a new
version of Fossil from the http://www.fossil-scm.org/. The edit link will be used later
to modify a leaf.

2.4.1 Update Summary

• fossil status and fossil extra will tell you the updated files and files not in the repository
before you commit.

PAN-20100424

Revision: 1.80

15 November 2016 Page 17 of 107

http://www.fossil-scm.org/

Fossil Version Control

A Users Guide

• fossil commit - m “Commit comment” Commits a change (or changes). It is very important
to have a descriptive comment on your commit.

2.5 Tickets

Besides managing your code Fossil has a trouble ticket system. This means you can create a ticket
for a problem or feature you are going to add to your system then track your progress. Also you can
tie the tickets to specific check-ins of your files. For software this is very useful for bug fixes and
feature additions. For example you can look for a bug in the ticket list then have it take you to the
change that fixed the problem. Then you know exactly what you did and not have to be confused by
other changes you might have made.

When you pick Tickets it will bring up this window. You can create a new ticket, look at the list, or
generate a new report. Keeping things simple I will just use the All Tickets list for now.

Figure 14: Initial Ticket Window

Picking “New Ticket” I get a form that I fill out like so:

PAN-20100424

Revision: 1.80

15 November 2016 Page 18 of 107

Fossil Version Control

A Users Guide

Figure 15: Ticket Form

Pretty simple actually. You can put as much or as little detail in here as you wish, but remember this
stuff might be really vital 6 weeks or 6 months from now so think of what you would want to know
then. When I press Submit I get this showing what I entered.

PAN-20100424

Revision: 1.80

15 November 2016 Page 19 of 107

Fossil Version Control

A Users Guide

Figure 16: Viewing a Ticket

Finally picking Tickets then “All Tickets” I can see my new ticket in the list marked as Open and in
a distinctive color.

Figure 17: Ticket List with open ticket

PAN-20100424

Revision: 1.80

15 November 2016 Page 20 of 107

Fossil Version Control

A Users Guide

I try, in handling tickets, to have links from ticket to the commit that addressed the problem and a
link from the commit back to the offending ticket. This way looking at the ticket I can get to the
changes made and from the timeline I can get the the ticket and its resolution. To do this I will make
sure and put the 10 digit hash label from the ticket into the check-in comment and put a link in the
resolved ticket to the check-in.

Since I have now written the chapter and put in all these images of what to do I can now add in all
the new images to the repository and check this in as another completed operation. And I do that
like this:

Pandora-2:jschimpf/Public/FossilBook] jim% fossil add Images/Single_user
ADDED Images/Single_user/config_initial.epsf
ADDED Images/Single_user/initial_page.epsf
ADDED Images/Single_user/jim_setup.epsf
ADDED Images/Single_user/ticket_form.epsf
ADDED Images/Single_user/ticket_initial.epsf
ADDED Images/Single_user/ticket_list.epsf
ADDED Images/Single_user/ticket_submit.epsf
ADDED Images/Single_user/timeline.epsf
ADDED Images/Single_user/timeline_detail.epsf
ADDED Images/Single_user/user_config.epsf
[Pandora-2:jschimpf/Public/FossilBook] jim% fossil commit -m "[1665c78d94] Ticket Use"

Figure 18: Ticket resolving check-in

First I added in all the new image files. I am lazy and just told it to add in all the files in the
Single_user directory. I have previously added some of those like config_initial.epsf but Fossil is
smart and knows this and won’t add that one twice. Even though it shows it ADDED, it really
didn’t.

The commit line is very important, as you can see I put 10 digit hash code for the ticket in brackets
in the comment. As we will see in the Wiki section this is a link to the Ticket, so when viewing the
comment in the Timeline or elsewhere you can click the bracketed item and you would go to the
ticket.

Now that I have the items checked in I have to close the ticket. I do that by clicking on its link in
the ticket list, that will go the the View Ticket window as shown in Figure 17 on the previous page.
From there I pick edit and fill it in as shown:

PAN-20100424

Revision: 1.80

15 November 2016 Page 21 of 107

Fossil Version Control

A Users Guide

Figure 19: Ticket Finish

I mark it as “Closed”. If you have code you can mark this as fixed, tested, or a number of other
choices. Another very important step, I brought up the Timeline and copied the link for the commit
I had just done in Figure 18 on the preceding page. By doing this my ticket is now cross linked with
the commit and the commit has a link back to the ticket.

PAN-20100424

Revision: 1.80

15 November 2016 Page 22 of 107

Fossil Version Control

A Users Guide

2.5.1 Ticket Summary

• Tickets are a useful way of reminding you what needs done or bugs fixed

• When you commit a change that affects a ticket put the 10 digit hash label of the ticket into
the commit comment surrounded by brackets, e.g. [<10 digit hash>] so you can link to the
ticket

• When you close the ticket put in the hash label of the commit that fixed it.

2.6 Wiki Use

As we saw in Figure 5 on page 11 Fossil has a browser based user interface. In addition to the pages
that are built in you can add pages to web site via a wiki. This allows you to add code descriptions,
user manuals, or other documentation. Fossil keeps all that stuff in one place under version control.
A wiki is a web site where you can add pages and links from within your browser. You are given an
initial page then if you type [newpage] this text will turn into a link and if clicked will take you to a
new blank page. Remember in Figure 6 on page 12 that is the initial page for your project and from
there you can add new pages. These pages are automatically managed by the Fossil version control
system; you don’t have to add or commit.

Since I did the setup on repository (see Figure 7 on page 12) the home page has changed to this:

Figure 20: Blank Home Page

Not very helpful so the in rest of this chapter I will use the Wiki functions of Fossil to make this
more useful. If I pick the Wiki item from the menu bar I get:

PAN-20100424

Revision: 1.80

15 November 2016 Page 23 of 107

Fossil Version Control

A Users Guide

Figure 21: Wiki controls

These are the controls that let you control and modify the wiki. Most important for now is the
Formatting rules link. This link takes you to a page that describes what you can do to format a wiki
page. If you just type text on a page it will appear but be formatted by your browser. You can type
HTML commands to control this formatting. It’s worth your time to carefully read this page and
note what you can and cannot do. The page just lists the valid HTML commands, and if you don’t
know what they mean I would suggest you find a page like this http://www.webmonkey.
com/2010/02/html_cheatsheet/ and keep it handy.

Besides the HTML markup the most powerful command for the Wiki is [page] where it links to a
new page. This is how you add pages and how you build your web site of documentation for the
repository.

PAN-20100424

Revision: 1.80

15 November 2016 Page 24 of 107

http://www.webmonkey.com/2010/02/html_cheatsheet/
http://www.webmonkey.com/2010/02/html_cheatsheet/

Fossil Version Control

A Users Guide

Figure 22: Wiki Formatting

I now begin work. What I want to do is change the home page to be non-empty and also put a link
on the home page to the PDF of this book. In Figure 21 on the preceding page I click on the first
item, the FossilBook home page. This takes me to the home page again but now I have an Edit
option. We also have a History option so I could look at older versions of the page.

Figure 23: Home page with edit

This shows my initial edit and a preview:

PAN-20100424

Revision: 1.80

15 November 2016 Page 25 of 107

Fossil Version Control

A Users Guide

Figure 24: Initial Home page

The bottom section is an edit window where I type things I want displayed and the top is a preview
of what the page will be. As you can see I typed some simple HTML to make a large and centered
title. The body of the text I just typed and as you see the browser fits the text to the screen. You can
have multiple paragraphs by just putting blank lines between your text. Next I wanted a bulleted
list and this is done by typing two spaces, a ’*’ then two more spaces. On each of these lines I have
a link to a new (not yet created page). If you look I put these in the form [<new page> | <title>].
This way I can have a long string that describes the link but have a nice short (no embedded spaces)

PAN-20100424

Revision: 1.80

15 November 2016 Page 26 of 107

Fossil Version Control

A Users Guide

page name.

One mistake I usually make at this point is to click one of those new links which takes me to a new
blank page. OOPS, if I have not saved this page yet then I find I’ve lost my changes so far.

OK, I will save my changes and then go to the new pages. I am doing some complicated things here.
The first link is to the book PDF. This will be a file I create in the repository. The LYX program I’m
using creates the PDF. I will do that, save it, and add it to the repository. But I don’t want to link to
a static file, that is I want the most current version of the PDF, the one I save each time I quit for the
day. To do this we have to put in a link that looks like this:

[http:doc/tip/FossilBook.pdf | Book (pdf)]

This is a special link the Fossil wiki understands, doc says this is documentation. tip says use the
most current version; you could put a version link here. And finally since I am going to put the
book PDF at the top level I only need the file name. If it was in a subdirectory I would have to say
doc/tip/subdir/filename.

The second link is just to a regular page and I can just edit that one just like I did this the main page.

2.6.1 Wiki Summary

• Format your text using HTML commands like <h1>Title</h1> for page headings

• Create and link pages using [<page> | <Link text>]

• The page designation http:doc/tip/<document path relative to repository> will display any
document in the repository that your browser can handle (i.e. pdf, http etc)

• Never click on a link till AFTER you have saved the page

3 Multiple Users

3.1 Introduction

In the previous chapter I went through using Fossil with just one user (me). In this chapter we
will get into using it with multiple users. Thanks to Fossil’s distributed design once the set up is
done using it is not much different than the single user case with Fossil managing automatically the
multiple user details.

3.2 Setup

In the previous chapter the Fossil repository was a file on our system and we did commits to it and
pulled copies of the source from it. Fossil is a distributed source control system; what this means

PAN-20100424

Revision: 1.80

15 November 2016 Page 27 of 107

Fossil Version Control

A Users Guide

is that there is a master repository in a place that all users can access. Each user has their own
“cloned” copy of the repository and Fossil will automatically synchronize the users repository with
the master. From a each user’s perspective you have your local repository and work with it using
the same commands shown in Chapter 2. It’s just that now Fossil will keep your repository in sync
with the master.

3.2.1 Server Setup

I have the FossilBook.fossil repository and now have to put it in place so multiple users can access
it. There are two ways, the first is using fossil’s built in webserver to host the file and the second is
using the operating systems supported web server (if present) and a cgi type access.

3.2.1.1 Self hosted This is quite simply the easiest way to do it. The downside is that you are
responsible for keeping the machine available and the webserver up. That is, don’t turn the machine
off when you quit for the day or some other user is going to be upset. All I have to do is this:

[Pandora-2:/Users/jschimpf/Public] jim% cd FOSSIL/
[Pandora-2:jschimpf/Public/FOSSIL] jim% fossil ui -port 8081 FossilBook.fossil &
[1] 310
[Pandora-2:jschimpf/Public/FOSSIL] jim%

Figure 25: Self-hosted Fossil repository

This is on UNIX system, the “&” at then end of the second line runs the fossil webserver in the
background. If I know this machine has an IP address of 192.168.1.200 then from any other machine
in the network I can say:

http://192.168.1.200:8081 to the browser and I can access the Fossil web server.

As you can see this is simple and works on any system that runs Fossil. As long as you carefully
make sure it’s always running and available for others this can be a very easy way to make the
master repository available.

The problems with this method are:

1. If you have multiple repositories you have to use the server not the ui command, have all
your repositories in the same directory, and have them all use the extension .fossil.

2. If the machine goes off line (i.e. for OS update) or other reason it might not automatically
restart the Fossil servers.

3. Backup of the repositories might be not be done.

This method does work, and if you only have one repository and a diligent owner of the master
machine, it will work and work well.

PAN-20100424

Revision: 1.80

15 November 2016 Page 28 of 107

Fossil Version Control

A Users Guide

3.2.1.2 Server hosted If you have a server type machine available (i.e., a Linux or UNIX box)
that is running Apache or a Windows machine running IIS you can let it be the webserver for your
repository. This has a number of advantages: this machine will be up all the time, it will probably
be automatically backed up, and it can easily support multiple Fossil repositories.

I am not going into how to set up the webserver or how to enable (Common Gateway Interface)
CGI. See the following sites.

• For IIS see here http://www.boutell.com/newfaq/creating/iiscgihowto.
html and just ensure that your fossil.exe is in the path to be run by the cgi script.

• For Apache see here http://httpd.apache.org/docs/2.0/howto/cgi.html
and ensure you know the directory where the CGI scripts are stored.

If you are not in control of the webserver you will need the help of the server admin to enable CGI
and to copy your CGI scripts to correct location.

3.2.1.3 CGI Script for hosted server If we assume an Apache server and, in my case, the cgi
directory path is /Library/Webserver/CGI-Executables, then we have to write a script of the form:

#!<Fossil executable location>
repository: <Fossil repository location>

Figure 26: Fossil CGI script

and put it into the cgi script directory. I have put my Fossil executable into /usr/local/bin and I am
putting my Fossil shared repository into /Users/Shared/FOSSIL. That is I am using the same Fossil
repository as the previous example (see 3.2.1.1 on the previous page) but now it will be references
by Apache instead of the Fossil web server. My script then becomes:

#!/usr/local/bin/fossil
Put the book repository on the web
repository: /Users/Shared/FOSSIL/Fossilbook.fossil

Figure 27: My Fossil CGI script

After making the script I then copy it to the CGI directory and allow anyone to execute it.

sudo cp Book.cgi /Library/Webserver/CGI-Executables/Book.cgi
sudo chmod a+x /Library/Webserver/CGI-Executables/Book.cgi

Figure 28: Copying script into place

PAN-20100424

Revision: 1.80

15 November 2016 Page 29 of 107

http://www.boutell.com/newfaq/creating/iiscgihowto.html
http://www.boutell.com/newfaq/creating/iiscgihowto.html
http://httpd.apache.org/docs/2.0/howto/cgi.html

Fossil Version Control

A Users Guide

After doing this the Apache server will execute the CGI script and it will run Fossil and bring up
the repository website.

3.2.2 The test (either self hosted or server hosted)

If all is in place then I should be able to access the webserver and get to this:

Figure 29: Web access to Fossil CGI hosted site

3.3 User Accounts

Serving a repository, either self hosting or the more complicated CGI method gets you to the same
place as shown in Figure 29. Now I have to set up user accounts for the other contributors to this
book. Remember Fossil has automatically created an Anonymous user (see Figure 8 on page 13)
thus others can access the site in a limited way, that is they can download the book but cannot
commit changes. In this case I want to create a new account (Marilyn) that can make changes and
commit changes as she is my editor.

To accomplish all this first I have to login by going to the log in page and entering my ID (jim) and
my password. Now since I’m super-user I then go back to the User-Configuration page, Figure (8)
and add a new user:

PAN-20100424

Revision: 1.80

15 November 2016 Page 30 of 107

Fossil Version Control

A Users Guide

Figure 30: New Editor user

Since she is going to be an editor, this will be similar to a developer if we were doing code, so I
picked the Developer privilege level. This way she can get the repository, check-in, check-out, and

PAN-20100424

Revision: 1.80

15 November 2016 Page 31 of 107

Fossil Version Control

A Users Guide

write and update tickets. I also added the attachments since she might need that to put on an image
or other comment on actions she is doing. I also gave her a password so her access can be secured.

I could add other users at this point but don’t need any others for this project, but you can see how
easily this can be done. When you assign the user privileges just read carefully and don’t give them
any more than you think they need. If they have problems, you can easily modify their account in
the future.

3.4 Multiple User Operation

With the server set up and the user established the next thing to do is clone the repository. That
is make copy from the webserver repository to my local machine. Once that is done this local
repository uses the same commands and is very much like single user use discussed in Section 2 on
page 8. Fossil will synchronize your local repository with the one on the server.

3.4.1 Cloning

To clone a Fossil repository you have to know four things:

1. It’s web address, for our repository it is http://pandora.dyn-o-saur.com:8080/cgi-bin/Book.cgi

2. Your account name in my case it’s jim

3. Your password (which I’m keeping to myself thank you...)

4. The local name of the repository, in this case I’m calling it Fossilbook.fossil

You then go to where you want to keep the Repository (in my case the FOSSIL directory) and use
the clone command:

[Pandora-2:jschimpf/Public/FOSSIL] fossil clone http://jim:<passwd>@pandora.dyn-o-saur.com:8080/cgi-bin/Book.cgi FossilBook.fossil

NOTE: <passwd> - Stands in for real password
Bytes Cards Artifacts Deltas

Send: 49 1 0 0
Received: 120 2 0 0
Send: 625 25 0 0
Received: 4704 72 0 0
Send: 3104 72 0 0
Received: 5129052 131 10 5
Send: 2399 51 0 0
Received: 4381170 116 22 28
Total network traffic: 4117 bytes sent, 6913068 bytes received
Rebuilding repository meta-data...
65 (100%)...
project-id: 2b0d35831c1a5b315d74c4fd8d532b100b822ad7
server-id: 3e67da6d6212494456c69b1c5406a277d7e50430
admin-user: jim (password is "d07222")
[Pandora-2:jschimpf/Public/FOSSIL] jim%

Figure 31: Clone command

PAN-20100424

Revision: 1.80

15 November 2016 Page 32 of 107

Fossil Version Control

A Users Guide

At this point I can go through the steps outlined in Section 2 on page 8 to set my user password and
then open the Fossil Repository on a working directory.

Now that I’ve moved everything to the new cloned repository I do a check in a the end of the day
which looks like this:

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil commit -m "Moved to clone repository"
Autosync: http://jim@pandora.dyn-o-saur.com:8080/cgi-bin/Book.cgi
Bytes Cards Artifacts Deltas
Send: 130 1 0 0
Received: 2990 65 0 0
Total network traffic: 334 bytes sent, 1876 bytes received
New_Version: 158492516c640d055bc0720684a05e797b88165a
Autosync: http://jim@pandora.dyn-o-saur.com:8080/cgi-bin/Book.cgi
Bytes Cards Artifacts Deltas
Send: 618798 74 1 2
Received: 3222 70 0 0
Send: 268138 73 1 0
Received: 3221 70 0 0
Send: 3977 72 0 1
Received: 3220 70 0 0
Total network traffic: 457995 bytes sent, 6011 bytes received
[Pandora-2:jschimpf/Public/FossilBook] jim%

Figure 32: Cloned repository checkin

As you see the files were committed locally and then the local repository was automatically syn-
chronized with the repository on the server.

3.4.2 Keeping in sync

After doing all the setup described above I now have a distributed source control system. My co-
worker, Marilyn has also cloned the repository and begun work. She is editing the book correcting
my clumsy phrasing and fixing spelling mistakes. She is working independently and on the same
files I use. We must use Fossil to prevent us from both modifying FossilBook.lyx but in differ-
ent ways. Remember Fossil has no file locking, there is nothing to prevent her from editing and
changing the file while I work on it.

This is where we both must follow procedures to prevent this sort of problem. Even though she
edits files I cannot see the changes till they are committed. Two different versions of the same file
won’t be a problem till I try to commit with my version and her version is in the current leaf.

There are two problems:

1. Before I do any work I must be sure I have the current versions of all the files.

2. When I commit I must make sure what I am committing has only my changes and is not
stepping on changes she has done.

The first is pretty obvious, make sure you have the latest before you do anything. We do that with
the update command. In Figure 32 I had done my latest check in. Before starting any more work I

PAN-20100424

Revision: 1.80

15 November 2016 Page 33 of 107

Fossil Version Control

A Users Guide

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil update trunk
Autosync: http://jim@pandora.dyn-o-saur.com:8080/cgi-bin/Book.cgi
Bytes Cards Artifacts Deltas
Send: 130 1 0 0
Received: 3588 78 0 0
Send: 365 6 0 0
Received: 136461 83 2 3
Total network traffic: 796 bytes sent, 131582 bytes received
UPDATE fossilbook.lyx
UPDATE fossilbook.pdf

[Pandora-2:jschimpf/Public/FossilBook] jim%

Figure 33: Update action

should ensure that Marilyn hasn’t checked in something else. I could check the timeline but instead
I’ll do an update to my repository and source files. When I do the update I specify it should be
updated from the trunk. This ensures I get it from the latest and greatest not some branch.

Ah ha ! Marilyn has been at work and updated the book source and pdf. If I check the timeline from
the webserver I see she has even documented it:

Figure 34: Updated Timeline

Now I know I have the current state of the world and I can proceed to add in new sections.

PAN-20100424

Revision: 1.80

15 November 2016 Page 34 of 107

Fossil Version Control

A Users Guide

3.4.3 Complications

In 3.4.2 on page 33 the second case is much harder. In this case I have diligently done my fossil
update and started working. In the mean time Marilyn has also done her update and also started
working. Now she is done and checks in her changes. I obviously don’t know this since I am
happily working on my changes. What happens next....

[Pandora-2:jschimpf/Public/FossilBook] jim%fossil commit -m "Commit that might fork"
Autosync: http://jim@pandora.dyn-o-saur.com:8080/cgi-bin/Book.cgi
Bytes Cards Artifacts Deltas
Send: 130 1 0 0
Received: 4002 87 0 0
Send: 365 6 0 0
Received: 110470 92 2 3
Total network traffic: 797 bytes sent, 104567 bytes received
fossil: would fork. "update" first or use -f or --force.
[Pandora-2:jschimpf/Public/FossilBook] jim%

Figure 35: Forking commit

Ah ha, that very thing has happened and fossil warned me that my copy of the file differs from
the master copy. If I did a –force then the repository would generate a fork and Marilyn’s future
commits would be to her fork and my commits would be to mine. That would not be what we want
since I want her to edit my copy of the book.

The next step would be to do as Fossil says and do an update. At this point you have to be careful
since blindly updating the changed files could overwrite the stuff I’ve just done. So we do a trial
update by using the -n and -v options to say“do a dry run” and show me the results.

PAN-20100424

Revision: 1.80

15 November 2016 Page 35 of 107

Fossil Version Control

A Users Guide

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil update -n -v
UNCHANGED Images/Multiple_user/mul_new_user.epsf
UNCHANGED Images/Multiple_user/mul_timeline.epsf
UNCHANGED Images/Multiple_user/test_access.epsf
UNCHANGED Images/Single_user/config_initial.epsf
UNCHANGED Images/Single_user/initial_page.epsf
UNCHANGED Images/Single_user/jim_setup.epsf
UNCHANGED Images/Single_user/ticket_done.epsf
UNCHANGED Images/Single_user/ticket_form.epsf
UNCHANGED Images/Single_user/ticket_initial.epsf
UNCHANGED Images/Single_user/ticket_list.epsf
UNCHANGED Images/Single_user/ticket_submit.epsf
UNCHANGED Images/Single_user/timeline.epsf
UNCHANGED Images/Single_user/timeline_detail.epsf
UNCHANGED Images/Single_user/user_config.epsf
UNCHANGED Images/Single_user/wiki_blankhome.epsf
UNCHANGED Images/Single_user/wiki_formating.epsf
UNCHANGED Images/Single_user/wiki_home.epsf
UNCHANGED Images/Single_user/wiki_homeedit.epsf
UNCHANGED Images/Single_user/wiki_page.epsf
UNCHANGED Layout/fossil.png
UNCHANGED Research/History/CVS-grune.pdf
UNCHANGED Research/History/RCS--A System for Version Control.webloc
UNCHANGED Research/History/SCCS-Slideshow.pdf
UNCHANGED Research/History/VCSHistory - pysync - A Brief History of Version Control Systems - Project Hosting on Google Code.webloc
UNCHANGED Research/fossilbib.bib
MERGE fossilbook.lyx
UPDATE fossilbook.pdf
UNCHANGED outline.txt
[Pandora-2:jschimpf/Public/FossilBook] jim%

Figure 36: Update dry run

That’s a little more than I wanted as you can see almost everything is UNCHANGED but it shows
that fossilbook.lyx needs a MERGE and fossilbook.pdf needs an UPDATE. This is what I should
expect, Marilyn has done edits to the fossilbook.lyx file and so have I so we have to merge the
changes. But she has also updated the fossilbook.pdf which I have not. Before we go on if you are
running on Linux or UNIX you can simplify this dry run by doing:

[Pandora-2:jschimpf/Public/FossilBook] jim%fossil update -n -v | grep -v UNCHANGED
MERGE fossilbook.lyx
UPDATE fossilbook.pdf

Figure 37: Update dry run, shorter

By using the pipe and grep I can eliminate all those extra UNCHANGED lines.

3.4.4 Fixing the Update file

First we fix the easy file, the fossilbook.pdf I can just update by itself so it matches the current
repository. It doesn’t need merged so just replace it. Before I do that I have to look at the repository
time line

PAN-20100424

Revision: 1.80

15 November 2016 Page 36 of 107

Fossil Version Control

A Users Guide

Figure 38: Current Timeline

I see that the current Leaf is [d44769cc23] and it is tagged as trunk. I want to update the fossil-
book.pdf from there. So I say:

[Pandora-2:jschimpf/Public/FossilBook] jim%fossil update trunk fossilbook.pdf
Autosync: http://jim@pandora.dyn-o-saur.com:8080/cgi-bin/Book.cgi

Bytes Cards Artifacts Deltas
Send: 130 1 0 0
Received: 4002 87 0 0
Total network traffic: 334 bytes sent, 2412 bytes received
UPDATE fossilbook.pdf
[Pandora-2:jschimpf/Public/FossilBook] jim%

Figure 39: Update fossilbook.pdf

PAN-20100424

Revision: 1.80

15 November 2016 Page 37 of 107

Fossil Version Control

A Users Guide

and it’s done.

3.4.5 Fixing the Merge file

We can use the tools built into Fossil. In this case noticing that commit will cause a fork Jim will
use the -force option to cause the fork and will handle the merge later.

E:\Profile\Ratte\data\organize\fossil-w32\fossil-book>fossil commit -m "adding some changes of jim"
fossil: would fork. "update" first or use -f or --force.

E:\Profile\Ratte\data\organize\fossil-w32\fossil-book>fossil commit -f -m "adding some other changes of jim"
New_Version: df9f2ff6b14ef65a9dd2162f8bd20c78e1628165

Figure 40: Forcing a commit under Windows

Now the timeline looks like:

Figure 41: Windows Forked timeline

To remove this fork (i.e. get the changes Marilyn did into the trunk) we use the Fossil merge
command. We can use the merge because fossilbook.lyx is a text file and the merge markers are
designed to work with text files. If it was a binary file we might have to use an external file or copy
and paste between the two file versions using the handler program for the file.

E:\Profile\Ratte\data\organize\fossil-w32\fossil-book>fossil merge a91582b699
MERGE fossilbook.lyx
***** 2 merge conflicts in fossilbook.lyx

Figure 42: Fossil Merge

Looking at the file (fossilbook.lyx) in a text editor (not LYX) we find:

PAN-20100424

Revision: 1.80

15 November 2016 Page 38 of 107

Fossil Version Control

A Users Guide

>>>>>>> BEGIN MERGE CONFLICT
Thanks to Fossil’s distributed design once the set up is done using it
with multiple users is not much different than the single user case.
Fossil will automatically manage the most multiple user details.
============================

Thanks to Fossil’s distributed design once the set up is done using is
not much different than the single user case with Fossil managing automatically
the multiple user details.
<<<<<<< END MERGE CONFLICT

<Here edit in the changes>
E:\Profile\Ratte\data\organize\fossil-w32\fossil-book>fossil commit -m "merging marilyn’s fork back"
New_Version: acdd676d3ab157769496f6845ccc7652985c1d03

Figure 43: Text differences

After the commit the timeline shows how the merge brought the fork back into the main trunk.
Marilyn will then have to update to this new trunk. (See Section ?? on page ??)

Figure 44: Merged timeline

4 Forks & Branches

4.1 Introduction

This chapter will cover forking and branching in Fossil. Forking is where you unintentionally create
two places to check into a repository. Branching is where you intentionally do this because you want
to maintain two or more versions of the code in the same repository. We illustrated forking and it’s
solutions in Section 3.4.3 on page 35. If, instead of fixing (merging) the file then doing the commit,
we forced the commit, Fossil would fork the repository.

Forking is something to avoid because it creates two checkin paths for the code. Thus different
users will be on different paths and can check in contradictory changes. Branches on the other
hand are forks that you desire. These occur when you want to have two different versions of the
code base in development at the same time. This was described in 1.1 on page 5 where you have
a production version of code under maintenance and a development version both served from the
same repository. In this case development changes should only be checked into the development
branch. Maintenance changes might have to be checked into both.

PAN-20100424

Revision: 1.80

15 November 2016 Page 39 of 107

Fossil Version Control

A Users Guide

Instead of using the book repository for these examples we will use a JSON[1]parser program that
has a number of files and documentation. This will make it simpler to illustrate branching and
tagging.

There is a good discussion of these topics on the Fossil Web site http://www.fossil-scm.
org/index.html/doc/tip/www/branching.wiki.

4.2 Forks, Branch & Merge

In this case the JSON code has just been placed in Fossil and two developers check out copies to
work on. Jim wants to fix a number of compiler warnings that appear and Marilyn wants to fix the
documentation. In both cases they proceed as shown in Chapter 3 on page 27. The JSON code has
been placed in a distributed location, each of them clones the repository, and opens a working copy
of the code.

4.2.1 Marilyn’s Actions

She looks through the documentation and finds a number of problems and fixes them (the documen-
tation uses LYX and PDF’s). When she is satisfied with what she has done, she checks the current
version of the documentation in:

Figure 45: Marilyn’s work

PAN-20100424

Revision: 1.80

15 November 2016 Page 40 of 107

http://www.fossil-scm.org/index.html/doc/tip/www/branching.wiki
http://www.fossil-scm.org/index.html/doc/tip/www/branching.wiki

Fossil Version Control

A Users Guide

4.2.2 Jim’s Actions

At the same time, Jim gets a working copy of version [6edbaf5fa8] of the code, puts in a ticket
[d23bf4bbbb] as shown in Figure 45. After fixing the warnings, Jim is done and goes to commit.
He does this AFTER Marilyn has done her commit.

551 jsonp> fossil commit -m "[d23bf4bbbb] Remove warnings"
Autosync: http://jim@pandora.dyn-o-saur.com:8080/cgi-bin/jsonp.cgi

Bytes Cards Artifacts Deltas
Send: 130 1 0 0
Received: 874 19 0 0
Total network traffic: 339 bytes sent, 771 bytes received
fossil: would fork. "update" first or use -f or --force.
552 jsonp>

Figure 46: Jim’s commit attempt

At this point Fossil recognizes that Marilyn has changed the repository (she updated the documen-
tation) but Jim does not have these changes because he checked out an earlier version of the code.
Jim says he must get his changes in so he does a FORCE to force fossil to accept the commit.

552 jsonp> fossil commit -m "[d23bf4bbbb] Remove warnings" -f
Autosync: http://jim@pandora.dyn-o-saur.com:8080/cgi-bin/jsonp.cgi

Bytes Cards Artifacts Deltas
Send: 130 1 0 0
Received: 874 19 0 0
Total network traffic: 338 bytes sent, 771 bytes received
New_Version: 1beab955418a942ab9953c4865109ff46cbbd691
Autosync: http://jim@pandora.dyn-o-saur.com:8080/cgi-bin/jsonp.cgi

Bytes Cards Artifacts Deltas
Send: 2646 25 0 4
Received: 1058 23 0 0
Total network traffic: 1498 bytes sent, 864 bytes received

**** warning: a fork has occurred *****

Figure 47: Forcing the commit

Looking at the timeline Jim sees this:

PAN-20100424

Revision: 1.80

15 November 2016 Page 41 of 107

Fossil Version Control

A Users Guide

Figure 48: Repository Fork

Not good, there are two Leaf’s and Marilyn would commit code to her fork and Jim would be
commuting code to his. So Jim must fix this by merging the code. Jim wants to merge versions
[b72e96832e] of Marilyn and his [1beab85441].

4.2.3 Fixing the fork

So Jim who’s checked out code is from Leaf [1beab85441] does a merge with Marilyn’s leaf
[b72e96832e] like so:

PAN-20100424

Revision: 1.80

15 November 2016 Page 42 of 107

Fossil Version Control

A Users Guide

556 jsonp> fossil merge b72e96832e
UPDATE docs/qdj.lyx
UPDATE docs/qdj.pdf
557 jsonp> fossil status
repository: /Users/jschimpf/Public/FOSSIL/jsonp.fossil
local-root: /Users/jschimpf/Public/jsonp/
server-code: d3e7932b0b0f5e704264ba30adeae14978c08bc6
checkout: 1beab955418a942ab9953c4865109ff46cbbd691 2010-06-08 10:44:56 UTC
parent: 6edbaf5fa8e4d061c2e04e7fd481e7663b090bd3 2010-06-07 10:45:57 UTC
tags: trunk
UPDATED_BY_MERGE docs/qdj.lyx
UPDATED_BY_MERGE docs/qdj.pdf
MERGED_WITH b72e96832e024f235696dcd6c5d0ddcc2cb38238

Figure 49: Merge Operation

As shown the two documentation files are updated, there are no merge conflicts as Jim didn’t touch
these files and Marilyn didn’t touch the code files.

Next Jim does a commit to make this new merged set of files the new trunk. Remember doing the
merge shown in Figure 49 just updates your checked out code and does not change the repository
till you check it in.

558 jsonp> fossil commit -m "After merging in changes"
Autosync: http://jim@pandora.dyn-o-saur.com:8080/cgi-bin/jsonp.cgi

Bytes Cards Artifacts Deltas
Send: 130 1 0 0
Received: 1058 23 0 0
Total network traffic: 340 bytes sent, 864 bytes received
New_Version: 3d73c03edee33cdc2e1bd8a47de57b7a6b6d880a
Autosync: http://jim@pandora.dyn-o-saur.com:8080/cgi-bin/jsonp.cgi

Bytes Cards Artifacts Deltas
Send: 1737 26 0 1
Received: 1104 24 0 0
Total network traffic: 1101 bytes sent, 888 bytes received
559 jsonp>

Figure 50: Commit after merge

When we look at the timeline we have a single leaf for future code commits.

PAN-20100424

Revision: 1.80

15 November 2016 Page 43 of 107

Fossil Version Control

A Users Guide

Figure 51: After merge timeline

The only other thing remaining is that Marilyn does an Update before proceeding so her checked
out code matches the repository.

WhiteBook:jsonp marilyn$ fossil update
Autosync: http://Marilyn@pandora.dyn-o-saur.com:8080/cgi-bin/jsonp.cgi

Bytes Cards Artifacts Deltas
Send: 130 1 0 0
Received: 1150 25 0 0
Send: 412 7 0 0
Received: 3274 31 1 5
Total network traffic: 843 bytes sent, 2709 bytes received
UPDATE json-src/qdj_token.c
UPDATE json-src/qdj_util.c
UPDATE main.c

Figure 52: Marilyn’s Update

4.2.4 Commands used

• fossil merge <fork> Used to merge a fork (specified by hash value) to current check out.

PAN-20100424

Revision: 1.80

15 November 2016 Page 44 of 107

Fossil Version Control

A Users Guide

• fossil update <version> Used to update current check out to specified version, if version not
present use default tag for check out (see fossil status)

4.3 Merge without fork

In this case I will show how to merge in code changes from multiple users without causing a fork.
In this case Marilyn has put in a BSD license text into all the code files while Jim is adding a help
function to the code. In this case both of them put in tickets saying what they are doing but acting
independently.

4.3.1 Check in attempt

Marilyn finished first and checks in her changes. Jim builds, tests and tries to check in his code and
gets:

502 jsonp> make
/usr/bin/gcc main.c -c -I. -Ijson-src -o obj/main.o
/usr/bin/gcc \
obj/main.o\
obj/qdj.o\
obj/qdj_util.o\
obj/qdj_token.o\
-o jsonp
503 jsonp> ./jsonp -v
JSON Test Program Ver: [Jun 9 2010] [10:15:00]
SYNTAX: jsonp -i <json text file> [-v]
-i <json text file> Show parse of JSON
-v Show help
506 jsonp> fossil commit -m "[fed383fa1a] Add help to cmd line"
Autosync: http://jim@pandora.dyn-o-saur.com:8080/cgi-bin/jsonp.cgi

Bytes Cards Artifacts Deltas
Send: 130 1 0 0
Received: 1656 36 0 0
Send: 647 12 0 0
Received: 14039 47 4 7
Total network traffic: 942 bytes sent, 4537 bytes received
fossil: would fork. "update" first or use -f or --force.

Figure 53: Jim’s check in attempt

4.3.2 Update

The next action Jim takes is to do the update but without doing changes, using the -n flag which
tells it to just show what’s going to happen without making any file changes.

PAN-20100424

Revision: 1.80

15 November 2016 Page 45 of 107

Fossil Version Control

A Users Guide

507 jsonp> fossil update -n
UPDATE json-src/qdj.c
UPDATE json-src/qdj.h
UPDATE json-src/qdj_token.c
UPDATE json-src/qdj_token.h
UPDATE json-src/qdj_util.c
MERGE main.c

Figure 54: Update dry run

This shows some files will be updated, i.e. be replaced by new text from the repository. The main.c
file will be merged with the version from the repository. That is text from the repository will be
mixed with the text from Jim’s modified file. Note that it says MERGE meaning the two sets of
text are a disjoint set. This means the merge can all be done by Fossil with no human intervention.

Jim can just do the update for real then commit the merged files to make a new leaf. So now we
have Marilyn’s and Jim changes combined in the latest version.

Figure 55: Merged repository

4.3.3 Commands used

• fossil update -n Does a dry run of an update to show what files will changed.

– UPDATE Implies file will be replaced by repository file

– MERGE Implies file will be mixed text from repository and check out

PAN-20100424

Revision: 1.80

15 November 2016 Page 46 of 107

Fossil Version Control

A Users Guide

4.4 Branching

4.4.1 Introduction

We have discussed this before but branching is the intention splitting of the code in the repository
into multiple paths. This will usually be done with production code where we have maintenance
branch and a development branch. The maintenance branch is in use and would get bug fixes based
on experience. The development branch would get those changes if applicable plus be modified to
add features.

The JSON code parser has been tested and works so will be released to general use. Also we wish
to modify it to add support for UTF-8 characters so it matches the JSON standard. The current
version just works with ASCII 7 bit characters which is not standard. We wish to split the code
into a VER_1.0 branch which is the current code in use and VER_2.0 branch which will add UTF-8
character support.

4.4.2 Branch the repository

Before proceeding we will make sure we have the current trunk code in our check out.

[Pandora-2:jschimpf/Public/jsonp] jim% fossil status
repository: /Users/jschimpf/Public/FOSSIL/jsonp.fossil
local-root: /Users/jschimpf/Public/jsonp/
server-code: 90c80f1a2da7360dae230ccec65ff82fe2eb160d
checkout: 462156b283b694af0b99c9b446b64d3f77436fbb 2010-06-09 14:16:42 UTC
parent: fbb16491e2ff9f9ca3a98adffa167de1b6903a44 2010-06-09 14:02:28 UTC
tags: trunk

Figure 56: Checking code status

Seeing that matches the latest leaf in the time line we can proceed to branch the code.

PAN-20100424

Revision: 1.80

15 November 2016 Page 47 of 107

Fossil Version Control

A Users Guide

[Pandora-2:jschimpf/Public/jsonp] jim% fossil branch new VER_1.0 trunk -bgcolor 0xFFC0FF
sh: gpg: command not found
unable to sign manifest. continue (y/N)? y
New branch: 65e1f48633d691a5ea738cd51ccbf9a581dfb3c7
Autosync: http://jim@pandora.dyn-o-saur.com:8080/cgi-bin/jsonp.cgi

Bytes Cards Artifacts Deltas
Send: 2391 42 0 1
Received: 1840 40 0 0
Total network traffic: 1524 bytes sent, 1272 bytes received
[Pandora-2:jschimpf/Public/jsonp] jim% fossil branch new VER_2.0 trunk -bgcolor 0xC0F0FF
sh: gpg: command not found
unable to sign manifest. continue (y/N)? y
New branch: a1737916ec2df696a0f3a7e36edf9ba4370e48a7
Autosync: http://jim@pandora.dyn-o-saur.com:8080/cgi-bin/jsonp.cgi

Bytes Cards Artifacts Deltas
Send: 2437 43 0 1
Received: 1886 41 0 0
Total network traffic: 1550 bytes sent, 1271 bytes received
[Pandora-2:jschimpf/Public/jsonp] jim%

Figure 57: Branch commands

What was just done. We used the Fossil branch command to create two branches VER_1.0 and
VER_2.0 and assigned each of them a color. We can see the timeline is now:

Figure 58: Branch Timeline

PAN-20100424

Revision: 1.80

15 November 2016 Page 48 of 107

Fossil Version Control

A Users Guide

4.4.3 Color Setup

As you see above the two branches have different colors in the timeline. This was due to the -
bgcolor option added when we created each branch. (See Figure 57). But we want this color to
appear on subsequent checkins of each of these branches. To make that happen we have to set the
options using the UI and picking a particular leaf on the timeline.

Figure 59: Setting Timeline color

Under the Background Color section I have checked Propagate color to descendants so future
checkins will have the same color.

PAN-20100424

Revision: 1.80

15 November 2016 Page 49 of 107

Fossil Version Control

A Users Guide

4.4.4 Check out the branches

Now the the repository is branched we can check out the two sets of code into different directories.
We create jsonp1 and jsonp2 and proceed to open the different branches into them.

[Pandora-2:jschimpf/Public/jsonp1] jim% fossil open ../FOSSIL/jsonp.fossil VER_1.0
docs/qdj.lyx
docs/qdj.pdf
json-src/qdj.c
json-src/qdj.h
json-src/qdj_token.c
json-src/qdj_token.h
json-src/qdj_util.c
main.c
makefile
obj/test.txt
test.txt
project-name: JASONP
repository: /Users/jschimpf/Public/FOSSIL/jsonp.fossil
local-root: /Users/jschimpf/Public/jsonp1/
project-code: eb6084c8ab115cf2b28a129c7183731002c6143a
server-code: 90c80f1a2da7360dae230ccec65ff82fe2eb160d
checkout: 65e1f48633d691a5ea738cd51ccbf9a581dfb3c7 2010-06-13 10:13:55 UTC
parent: 462156b283b694af0b99c9b446b64d3f77436fbb 2010-06-09 14:16:42 UTC
tags: VER_1.0

Figure 60: Check out VER_1.0

Checking out VER_2.0 in the same way

PAN-20100424

Revision: 1.80

15 November 2016 Page 50 of 107

Fossil Version Control

A Users Guide

[Pandora-2:jschimpf/Public/jsonp2] jim% fossil open ../FOSSIL/jsonp.fossil VER_2.0
docs/qdj.lyx
docs/qdj.pdf
json-src/qdj.c
json-src/qdj.h
json-src/qdj_token.c
json-src/qdj_token.h
json-src/qdj_util.c
main.c
makefile
obj/test.txt
test.txt
project-name: JASONP
repository: /Users/jschimpf/Public/FOSSIL/jsonp.fossil
local-root: /Users/jschimpf/Public/jsonp2/
project-code: eb6084c8ab115cf2b28a129c7183731002c6143a
server-code: 90c80f1a2da7360dae230ccec65ff82fe2eb160d
checkout: a1737916ec2df696a0f3a7e36edf9ba4370e48a7 2010-06-13 10:14:26 UTC
parent: 462156b283b694af0b99c9b446b64d3f77436fbb 2010-06-09 14:16:42 UTC
tags: VER_2.0

Figure 61: VER_2.0 checkout

Notice on both of these the tags show which branch we are attached to.

4.4.5 Correcting errors (in both)

After doing this work I found that the main.c file had a warning about an unused variable. I wanted
to correct this in both branches. At this point all the files in both branches are the same so correcting
the file in either branch and copying it to the other is possible. I put in a ticket for the change and
edit main.c. I copy it to both checkouts for the both branches and then check both in.

Now the timeline looks like this:

Figure 63: Correcting both branches

PAN-20100424

Revision: 1.80

15 November 2016 Page 51 of 107

Fossil Version Control

A Users Guide

[Pandora-2:jschimpf/Public/jsonp1] jim% fossil commit -m "[2795e6c74d] Fix unused variable"
Autosync: http://jim@pandora.dyn-o-saur.com:8080/cgi-bin/jsonp.cgi

Bytes Cards Artifacts Deltas
Send: 130 1 0 0
Received: 2116 46 0 0
Send: 365 6 0 0
Received: 3601 51 5 0
Total network traffic: 805 bytes sent, 3464 bytes received
New_Version: 3b902585d0e8849399286139d27676c5a349de7b
Autosync: http://jim@pandora.dyn-o-saur.com:8080/cgi-bin/jsonp.cgi

Bytes Cards Artifacts Deltas
Send: 3034 50 0 2
Received: 2208 48 0 0
Total network traffic: 1848 bytes sent, 1444 bytes received
[Pandora-2:jschimpf/Public/jsonp1] jim% cd ..
[Pandora-2:/Users/jschimpf/Public] jim% cd jsonp2
[Pandora-2:jschimpf/Public/jsonp2] jim% cp ../jsonp1/main.c .
[Pandora-2:jschimpf/Public/jsonp2] jim% fossil status
repository: /Users/jschimpf/Public/FOSSIL/jsonp.fossil
local-root: /Users/jschimpf/Public/jsonp2/
server-code: 90c80f1a2da7360dae230ccec65ff82fe2eb160d
checkout: a1737916ec2df696a0f3a7e36edf9ba4370e48a7 2010-06-13 10:14:26 UTC
parent: 462156b283b694af0b99c9b446b64d3f77436fbb 2010-06-09 14:16:42 UTC
tags: VER_2.0
EDITED main.c
[Pandora-2:jschimpf/Public/jsonp2] jim% fossil commit -m "[2795e6c74d] Fix unused variable"
Autosync: http://jim@pandora.dyn-o-saur.com:8080/cgi-bin/jsonp.cgi

Bytes Cards Artifacts Deltas
Send: 130 1 0 0
Received: 2392 52 0 0
Send: 318 5 0 0
Received: 3320 56 4 0
Total network traffic: 781 bytes sent, 3508 bytes received
New_Version: 762a31854d708080678598c8d4ce28465cbee8c5
Autosync: http://jim@pandora.dyn-o-saur.com:8080/cgi-bin/jsonp.cgi

Bytes Cards Artifacts Deltas
Send: 3253 55 0 2
Received: 2438 53 0 0
Total network traffic: 1972 bytes sent, 1573 bytes received
[Pandora-2:jschimpf/Public/jsonp2] jim%

Figure 62: Fixing both branches

PAN-20100424

Revision: 1.80

15 November 2016 Page 52 of 107

Fossil Version Control

A Users Guide

4.4.6 Commands used

• fossil branch Used to generate a branch of the repository. The command can optionally color
the branch in the display.

5 Fossil Commands

5.1 Introduction

This section will go through the various Fossil command line commands. This will be divided into
sections, the first will detail the must know commands. These are the ones you will be using all
the time and will probably have memorized in short order. The other commands will be divided
into Maintenance, Advanced, and Miscellaneous. These you will probably be checking as reference
before use.

The most important command is help. You can always type fossil help at the command line and it
will list out all the commands it has. Then typing fossil help <command> will print out the detailed
information on that command. You always have that as your reference. This section of the book will
try to supplement the built in help with some examples and further explanation of what a command
does. All of the commands will be placed in the index for easy searching

NOTE: Fossil is a moving target, commands might be added and others removed future versions.
Type fossil help on your version to get the latest list. The following applies to the fossil I used when
I wrote this and your version might be different. This chapter is based on Fossil version 1.36.

5.2 Basic Commands

5.2.1 help

This command is used to dump the current command set and version of Fossil. It can also be used
in the form fossil help <command> to get further information on any command.

Usage: fossil help COMMAND
Common COMMANDs: (use "fossil help -a|--all" for a complete list)
add cat finfo mv rm ui
addremove changes fusefs open rss undo
all clean gdiff praise settings unpublished
amend clone help publish sqlite3 unversioned
annotate commit import pull stash update
bisect delete info push status version
blame diff init rebuild sync
branch export ls remote-url tag
bundle extras merge revert timeline
This is fossil version 1.36 [c24373934d] 2016-10-24 14:59:33 UTC

Figure 64: Help run

PAN-20100424

Revision: 1.80

15 November 2016 Page 53 of 107

Fossil Version Control

A Users Guide

Using it to get further information about a particular command

505 ~> help help
help: help [-s] [pattern ...]
 Display helpful information about builtin commands. If PATTERN is
 specified, gives detailed help on all commands matching PATTERN,
 otherwise a list of the builtins is printed. The -s option
 restricts the output for each builtin command matching PATTERN to
 a short usage synopsis.
506 ~>

Figure 65: Help detail

5.2.2 add

The add command is used to add files into a repository. It is recursive and will pull in all files
in subdirectories of the current. Fossil will not overwrite any of the files already present in the
repository so it is safe to add all the files at any time. Only new files will be added.

PAN-20100424

Revision: 1.80

15 November 2016 Page 54 of 107

Fossil Version Control

A Users Guide

504 ~> fossil help add
Usage: fossil add ?OPTIONS? FILE1 ?FILE2 ...?

Make arrangements to add one or more files or directories to the
current checkout at the next commit.

When adding files or directories recursively, filenames that begin
with "." are excluded by default. To include such files, add
the "--dotfiles" option to the command-line.

The --ignore and --clean options are comma-separate lists of glob patterns
for files to be excluded. Example: '*.o,*.obj,*.exe' If the --ignore
option does not appear on the command line then the "ignore-glob" setting
is used. If the --clean option does not appear on the command line then
the "clean-glob" setting is used.

If files are attempted to be added explicitly on the command line which
match "ignore-glob", a confirmation is asked first. This can be prevented
using the -f|--force option.

The --case-sensitive option determines whether or not filenames should
be treated case sensitive or not. If the option is not given, the default
depends on the global setting, or the operating system default, if not set.

Options:

 --case-sensitive <BOOL> Override the case-sensitive setting.
 --dotfiles include files beginning with a dot (".")
 -f|--force Add files without prompting
 --ignore <CSG> Ignore files matching patterns from the
 comma separated list of glob patterns.
 --clean <CSG> Also ignore files matching patterns from
 the comma separated list of glob patterns.

See also: addremove, rm

Figure 66: add detail

Typing:

fossil add .

will add all files in the current directory and subdirectories.

Note none of these files are put in the repository until a commit is done.

5.2.3 addremove

The addremove command command is used when a lot of changes have been made to the checked
out directory and it looks like Swiss cheese with a lot of adds and missing files. It allows you to

PAN-20100424

Revision: 1.80

15 November 2016 Page 55 of 107

Fossil Version Control

A Users Guide

clean up the mess with one simple command. Important Before using it make sure you remove
any extra files like obj files or intermediate files from building that you don’t want in the repository.

5.2.4 rm or delete or forget

The rm command is used to remove files from the repository. The file is not deleted from the file
system but it will be dropped from the repository on the next commit. This file will still be available
in earlier versions of the repository but not in later ones.

502 ~> fossil help rm
Usage: fossil rm|delete|forget FILE1 ?FILE2 ...?

Remove one or more files or directories from the repository.

The 'rm' and 'delete' commands do NOT normally remove the files from
disk. They just mark the files as no longer being part of the project.
In other words, future changes to the named files will not be versioned.
However, the default behavior of this command may be overridden via the
command line options listed below and/or the 'mv-rm-files' setting.

The 'forget' command never removes files from disk, even when the command
line options and/or the 'mv-rm-files' setting would otherwise require it
to do so.

WARNING: If the "--hard" option is specified -OR- the "mv-rm-files"
 setting is non-zero, files WILL BE removed from disk as well.
 This does NOT apply to the 'forget' command.

Options:
 --soft Skip removing files from the checkout.
 This supersedes the --hard option.
 --hard Remove files from the checkout.
 --case-sensitive <BOOL> Override the case-sensitive setting.
 -n|--dry-run If given, display instead of run actions.

See also: addremove, add

Figure 68: rm detail

You can delete groups of files by using wild-cards in their names. Thus if I had a group of files like
com_tr.c, com_rx.c and com_mgmt.c I could remove them all with:

fossil rm com_*.c

By running a “fossil status” you can see what files will be deleted on the next commit.

PAN-20100424

Revision: 1.80

15 November 2016 Page 56 of 107

Fossil Version Control

A Users Guide

501 ~> fossil help addremove
Usage: fossil addremove ?OPTIONS?

Do all necessary "add" and "rm" commands to synchronize the repository
with the content of the working checkout:

 * All files in the checkout but not in the repository (that is,
 all files displayed using the "extras" command) are added as
 if by the "add" command.

 * All files in the repository but missing from the checkout (that is,
 all files that show as MISSING with the "status" command) are
 removed as if by the "rm" command.

The command does not "commit". You must run the "commit" separately
as a separate step.

Files and directories whose names begin with "." are ignored unless
the --dotfiles option is used.

The --ignore option overrides the "ignore-glob" setting, as do the
--case-sensitive option with the "case-sensitive" setting and the
--clean option with the "clean-glob" setting. See the documentation
on the "settings" command for further information.

The -n|--dry-run option shows what would happen without actually doing
anything.

This command can be used to track third party software.

Options:
 --case-sensitive <BOOL> Override the case-sensitive setting.
 --dotfiles Include files beginning with a dot (".")
 --ignore <CSG> Ignore files matching patterns from the
 comma separated list of glob patterns.
 --clean <CSG> Also ignore files matching patterns from
 the comma separated list of glob patterns.
 -n|--dry-run If given, display instead of run actions.

See also: add, rm

Figure 67: addremove detail

PAN-20100424

Revision: 1.80

15 November 2016 Page 57 of 107

Fossil Version Control

A Users Guide

5.2.5 rename or mv

This command is used to rename a file in the repository. This does not rename files on disk so is
usually used after you have renamed files on the disk then want to change this in the repository.

513 ~> fossil help rename
Usage: fossil mv|rename OLDNAME NEWNAME
 or: fossil mv|rename OLDNAME... DIR

Move or rename one or more files or directories within the repository tree.
You can either rename a file or directory or move it to another subdirectory.

The 'mv' command does NOT normally rename or move the files on disk.
This command merely records the fact that file names have changed so
that appropriate notations can be made at the next commit/check-in.
However, the default behavior of this command may be overridden via
command line options listed below and/or the 'mv-rm-files' setting.

The 'rename' command never renames or moves files on disk, even when the
command line options and/or the 'mv-rm-files' setting would otherwise
require it to do so.

WARNING: If the "--hard" option is specified -OR- the "mv-rm-files"
 setting is non-zero, files WILL BE renamed or moved on disk
 as well. This does NOT apply to the 'rename' command.

Options:
 --soft Skip moving files within the checkout.
 This supersedes the --hard option.
 --hard Move files within the checkout.
 --case-sensitive <BOOL> Override the case-sensitive setting.
 -n|--dry-run If given, display instead of run actions.

See also: changes, status

Figure 69: rename detail

Just like add or rm you can use wild cards in the names and rename groups of files. Like them
“fossil status” will show you the current state.

5.2.6 status

The status command is used to show you the current state of your files relative to the repository. It
will show you files added, deleted, and changed. This is only the condition of files that are already
in the repository or under control of fossil. It also shows from where in the timeline you are checked
out and where your repository is kept.

PAN-20100424

Revision: 1.80

15 November 2016 Page 58 of 107

Fossil Version Control

A Users Guide

515 ~> fossil help status
Usage: fossil status ?OPTIONS?

Report on the status of the current checkout.

Pathnames are displayed according to the "relative-paths" setting,
unless overridden by the --abs-paths or --rel-paths options.

Options:

 --abs-paths Display absolute pathnames.
 --rel-paths Display pathnames relative to the current working
 directory.
 --sha1sum Verify file status using SHA1 hashing rather
 than relying on file mtimes.

See also: changes, extras, ls

Figure 70: status run

The listing above shows where my cloned copy of the repository is kept, where I am working, and
the tags show me that I am checked out of the trunk. Finally it shows the status of the files: I am
working on two of them.

5.2.7 changes

This lists the changed files like status but does not show the other information that status does.

5.2.8 extra

The extra command is used to find files you have added to your working directory but are not
yet under Fossil control. This is important because if you move your working directory or others
attempt to use the repository they won’t have these files.

PAN-20100424

Revision: 1.80

15 November 2016 Page 59 of 107

Fossil Version Control

A Users Guide

516 ~> fossil help changes
Usage: fossil changes ?OPTIONS?

Report on the edit status of all files in the current checkout.

Pathnames are displayed according to the "relative-paths" setting,
unless overridden by the --abs-paths or --rel-paths options.

Options:
 --abs-paths Display absolute pathnames.
 --rel-paths Display pathnames relative to the current working
 directory.
 --sha1sum Verify file status using SHA1 hashing rather
 than relying on file mtimes.
 --header Identify the repository if there are changes
 -v|--verbose Say "(none)" if there are no changes

See also: extras, ls, status

Figure 71: changes details

517 ~> fossil help extra
Usage: fossil extras ?OPTIONS? ?PATH1 ...?

Print a list of all files in the source tree that are not part of the
current checkout. See also the "clean" command. If paths are specified,
only files in the given directories will be listed.

Files and subdirectories whose names begin with "." are normally
ignored but can be included by adding the --dotfiles option.

Files whose names match any of the glob patterns in the "ignore-glob"
setting are ignored. This setting can be overridden by the --ignore
option, whose CSG argument is a comma-separated list of glob patterns.

Pathnames are displayed according to the "relative-paths" setting,
unless overridden by the --abs-paths or --rel-paths options.

Options:
 --abs-paths Display absolute pathnames.
 --case-sensitive <BOOL> override case-sensitive setting
 --dotfiles include files beginning with a dot (".")
 --header Identify the repository if there are extras
 --ignore <CSG> ignore files matching patterns from the argument
 --rel-paths Display pathnames relative to the current working
 directory.

See also: changes, clean, status

Figure 72: extra details

PAN-20100424

Revision: 1.80

15 November 2016 Page 60 of 107

Fossil Version Control

A Users Guide

The –dotfiles option shows you any files starting with “.” that are not under Fossil control. This
would be important if you need those files in your repository. The last option –ignore allows you
to ignore certain files you know don’t belong in the repository. In my case there is a file called
fossilbook.lyx~ that is a LYX backup file that I do not want, as it is temporary. So I can say

fossil extra --ignore *.lyx~

and only get:

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil extra --ignore *.lyx~
Images/Commands/help1.epsf

instead of:

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil extra
Images/Commands/help1.epsf
fossilbook.lyx~

5.2.9 revert

The revert command is used to take a file back to the value in the repository. This is useful when
you make a error in editing or other mistake.

518 ~> fossil help revert
Usage: fossil revert ?-r REVISION? ?FILE ...?

Revert to the current repository version of FILE, or to
the version associated with baseline REVISION if the -r flag
appears.

If FILE was part of a rename operation, both the original file
and the renamed file are reverted.

Revert all files if no file name is provided.

If a file is reverted accidently, it can be restored using
the "fossil undo" command.

Options:
 -r REVISION revert given FILE(s) back to given REVISION

See also: redo, undo, update

Figure 73: revert details

With no parameters it will revert the file to the current revision, see Figure 70 on page 59. The -r
option allows you to pick any revision from the time line.

PAN-20100424

Revision: 1.80

15 November 2016 Page 61 of 107

Fossil Version Control

A Users Guide

5.2.10 update

The update option will update a file or files to match the repository. With multiple users it should be
done before you start working on any files. This ensures you have the latest version of all the files.

519 ~> fossil help update
Usage: fossil update ?OPTIONS? ?VERSION? ?FILES...?

Change the version of the current checkout to VERSION. Any
uncommitted changes are retained and applied to the new checkout.

The VERSION argument can be a specific version or tag or branch
name. If the VERSION argument is omitted, then the leaf of the
subtree that begins at the current version is used, if there is
only a single leaf. VERSION can also be "current" to select the
leaf of the current version or "latest" to select the most recent
check-in.

If one or more FILES are listed after the VERSION then only the
named files are candidates to be updated, and any updates to them
will be treated as edits to the current version. Using a directory
name for one of the FILES arguments is the same as using every
subdirectory and file beneath that directory.

If FILES is omitted, all files in the current checkout are subject
to being updated and the version of the current checkout is changed
to VERSION. Any uncommitted changes are retained and applied to the
new checkout.

The -n or --dry-run option causes this command to do a "dry run".
It prints out what would have happened but does not actually make
any changes to the current checkout or the repository.

The -v or --verbose option prints status information about
unchanged files in addition to those file that actually do change.

Options:
 --case-sensitive <BOOL> override case-sensitive setting
 --debug print debug information on stdout
 --latest acceptable in place of VERSION, update to latest version
 --force-missing force update if missing content after sync
 -n|--dry-run If given, display instead of run actions
 -v|--verbose print status information about all files
 -W|--width <num> Width of lines (default is to auto-detect). Must be >20
 or 0 (= no limit, resulting in a single line per entry).

See also: revert

Figure 74: update details

Update has a number of options, first you can tie the update to a particular version, if not picked

PAN-20100424

Revision: 1.80

15 November 2016 Page 62 of 107

Fossil Version Control

A Users Guide

then it just uses the latest. Second it can work on a single files or many files at once. That is you
could say

fossil update *.c

and it would update all C files.

Since this is a rather large set of changes it has a special “dry run” mode. If you add -n on the
command it will just print out what will be done but not do it. This is very useful to do this trial if
you are unsure what might happen. The -v command (which can be used with -n or alone) prints
out the action for each file even if it does nothing.

5.2.11 checkout or co

This command is similar to update.

520 ~> fossil help checkout
Usage: fossil checkout ?VERSION | --latest? ?OPTIONS?
 or: fossil co ?VERSION | --latest? ?OPTIONS?

Check out a version specified on the command-line. This command
will abort if there are edited files in the current checkout unless
the --force option appears on the command-line. The --keep option
leaves files on disk unchanged, except the manifest and manifest.uuid
files.

The --latest flag can be used in place of VERSION to checkout the
latest version in the repository.

Options:
 --force Ignore edited files in the current checkout
 --keep Only update the manifest and manifest.uuid files
 --force-missing Force checkout even if content is missing

See also: update

Figure 75: checkout or co details

5.2.12 undo

This is used to undo the last update, merge, or revert operation.

PAN-20100424

Revision: 1.80

15 November 2016 Page 63 of 107

Fossil Version Control

A Users Guide

521 ~> fossil help undo
Usage: fossil undo ?OPTIONS? ?FILENAME...?
 or: fossil redo ?OPTIONS? ?FILENAME...?

Undo the changes to the working checkout caused by the most recent
of the following operations:

 (1) fossil update (5) fossil stash apply
 (2) fossil merge (6) fossil stash drop
 (3) fossil revert (7) fossil stash goto
 (4) fossil stash pop

The "fossil clean" operation can also be undone; however, this is
currently limited to files that are less than 10MiB in size.

If FILENAME is specified then restore the content of the named
file(s) but otherwise leave the update or merge or revert in effect.
The redo command undoes the effect of the most recent undo.

If the -n|--dry-run option is present, no changes are made and instead
the undo or redo command explains what actions the undo or redo would
have done had the -n|--dry-run been omitted.

A single level of undo/redo is supported. The undo/redo stack
is cleared by the commit and checkout commands.

Options:
 -n|--dry-run do not make changes but show what would be done

See also: commit, status

Figure 76: undo details

It acts on a single file or files if specified, otherwise if no file given, it undoes all of the last changes.

5.2.13 diff

The diff command is used to produce a text listing of the difference of a file in the working directory
and that same file in the repository. If you don’t specify a file it will show the differences between
all the changed files in the working directory vs the repository. If you use the –from and –to options
you can specify which versions to check and to compare between two different versions in the
repository. Not using the –to means compare with the working directory.

If you have configured an external diff program it will be used unless you use the -i option which
uses the diff built into Fossil.

PAN-20100424

Revision: 1.80

15 November 2016 Page 64 of 107

Fossil Version Control

A Users Guide

522 ~> fossil help diff
Usage: fossil diff|gdiff ?OPTIONS? ?FILE1? ?FILE2 ...?

Show the difference between the current version of each of the FILEs
specified (as they exist on disk) and that same file as it was checked
out. Or if the FILE arguments are omitted, show the unsaved changes
currently in the working check-out.

If the "--from VERSION" or "-r VERSION" option is used it specifies
the source check-in for the diff operation. If not specified, the
source check-in is the base check-in for the current check-out.

If the "--to VERSION" option appears, it specifies the check-in from
which the second version of the file or files is taken. If there is
no "--to" option then the (possibly edited) files in the current check-out
are used.

The "--checkin VERSION" option shows the changes made by
check-in VERSION relative to its primary parent.

The "-i" command-line option forces the use of the internal diff logic
rather than any external diff program that might be configured using
the "setting" command. If no external diff program is configured, then
the "-i" option is a no-op. The "-i" option converts "gdiff" into "diff".

The "-N" or "--new-file" option causes the complete text of added or
deleted files to be displayed.

The "--diff-binary" option enables or disables the inclusion of binary files
when using an external diff program.

The "--binary" option causes files matching the glob PATTERN to be treated
as binary when considering if they should be used with external diff program.
This option overrides the "binary-glob" setting.

Options:
 --binary PATTERN Treat files that match the glob PATTERN as binary
 --branch BRANCH Show diff of all changes on BRANCH
 --brief Show filenames only
 --checkin VERSION Show diff of all changes in VERSION
 --context|-c N Use N lines of context
 --diff-binary BOOL Include binary files when using external commands
 --exec-abs-paths Force absolute path names with external commands.
 --exec-rel-paths Force relative path names with external commands.
 --from|-r VERSION Select VERSION as source for the diff
 --internal|-i Use internal diff logic
 --side-by-side|-y Side-by-side diff
 --strip-trailing-cr Strip trailing CR
 --tk Launch a Tcl/Tk GUI for display
 --to VERSION Select VERSION as target for the diff
 --undo Diff against the "undo" buffer
 --unified Unified diff
 -v|--verbose Output complete text of added or deleted files
 -w|--ignore-all-space Ignore white space when comparing lines
 -W|--width <num> Width of lines in side-by-side diff
 -Z|--ignore-trailing-space Ignore changes to end-of-line whitespace

Figure 77: diff details

PAN-20100424

Revision: 1.80

15 November 2016 Page 65 of 107

Fossil Version Control

A Users Guide

5.2.14 gdiff

This is the same as the diff command but uses (if configured) a graphical diff program you have on
your system. See the settings command for details on how to set the graphical diff program.

5.2.15 ui

The ui command is used to start Fossil in a local webserver. The –port option is used to specify the
port it uses, by default it uses 8080. It should automatically start the system’s web browser and it
will come up with the repository web page. If run within a working directory it will bring up the
web page for that repository. If run outside the working directory you can specify the repository on
the command line.

PAN-20100424

Revision: 1.80

15 November 2016 Page 66 of 107

Fossil Version Control

A Users Guide

523 ~> fossil help gdiff
Usage: fossil diff|gdiff ?OPTIONS? ?FILE1? ?FILE2 ...?

Show the difference between the current version of each of the FILEs
specified (as they exist on disk) and that same file as it was checked
out. Or if the FILE arguments are omitted, show the unsaved changes
currently in the working check-out.

If the "--from VERSION" or "-r VERSION" option is used it specifies
the source check-in for the diff operation. If not specified, the
source check-in is the base check-in for the current check-out.

If the "--to VERSION" option appears, it specifies the check-in from
which the second version of the file or files is taken. If there is
no "--to" option then the (possibly edited) files in the current check-out
are used.

The "--checkin VERSION" option shows the changes made by
check-in VERSION relative to its primary parent.

The "-i" command-line option forces the use of the internal diff logic
rather than any external diff program that might be configured using
the "setting" command. If no external diff program is configured, then
the "-i" option is a no-op. The "-i" option converts "gdiff" into "diff".

The "-N" or "--new-file" option causes the complete text of added or
deleted files to be displayed.

The "--diff-binary" option enables or disables the inclusion of binary files
when using an external diff program.

The "--binary" option causes files matching the glob PATTERN to be treated
as binary when considering if they should be used with external diff program.
This option overrides the "binary-glob" setting.

Options:
 --binary PATTERN Treat files that match the glob PATTERN as binary
 --branch BRANCH Show diff of all changes on BRANCH
 --brief Show filenames only
 --checkin VERSION Show diff of all changes in VERSION
 --context|-c N Use N lines of context
 --diff-binary BOOL Include binary files when using external commands
 --exec-abs-paths Force absolute path names with external commands.
 --exec-rel-paths Force relative path names with external commands.
 --from|-r VERSION Select VERSION as source for the diff
 --internal|-i Use internal diff logic
 --side-by-side|-y Side-by-side diff
 --strip-trailing-cr Strip trailing CR
 --tk Launch a Tcl/Tk GUI for display
 --to VERSION Select VERSION as target for the diff
 --undo Diff against the "undo" buffer
 --unified Unified diff
 -v|--verbose Output complete text of added or deleted files
 -w|--ignore-all-space Ignore white space when comparing lines
 -W|--width <num> Width of lines in side-by-side diff
 -Z|--ignore-trailing-space Ignore changes to end-of-line whitespace

Figure 78: gdiff details

PAN-20100424

Revision: 1.80

15 November 2016 Page 67 of 107

Fossil Version Control

A Users Guide

524 ~> fossil help ui
Usage: fossil server ?OPTIONS? ?REPOSITORY?
 or: fossil ui ?OPTIONS? ?REPOSITORY?

Open a socket and begin listening and responding to HTTP requests on
TCP port 8080, or on any other TCP port defined by the -P or
--port option. The optional argument is the name of the repository.
The repository argument may be omitted if the working directory is
within an open checkout.

The "ui" command automatically starts a web browser after initializing
the web server. The "ui" command also binds to 127.0.0.1 and so will
only process HTTP traffic from the local machine.

The REPOSITORY can be a directory (aka folder) that contains one or
more repositories with names ending in ".fossil". In this case, a
prefix of the URL pathname is used to search the directory for an
appropriate repository. To thwart mischief, the pathname in the URL must
contain only alphanumerics, "_", "/", "-", and ".", and no "-" may
occur after "/", and every "." must be surrounded on both sides by
alphanumerics. Any pathname that does not satisfy these constraints
results in a 404 error. Files in REPOSITORY that match the comma-separated
list of glob patterns given by --files and that have known suffixes
such as ".txt" or ".html" or ".jpeg" and do not match the pattern
"*.fossil*" will be served as static content. With the "ui" command,
the REPOSITORY can only be a directory if the --notfound option is
also present.

By default, the "ui" command provides full administrative access without
having to log in. This can be disabled by turning off the "localauth"
setting. Automatic login for the "server" command is available if the
--localauth option is present and the "localauth" setting is off and the
connection is from localhost. The "ui" command also enables --repolist
by default.

Options:
 --baseurl URL Use URL as the base (useful for reverse proxies)
 --create Create a new REPOSITORY if it does not already exist
 --page PAGE Start "ui" on PAGE. ex: --page "timeline?y=ci"
 --files GLOBLIST Comma-separated list of glob patterns for static files
 --localauth enable automatic login for requests from localhost
 --localhost listen on 127.0.0.1 only (always true for "ui")
 --https signal a request coming in via https
 --nojail Drop root privileges but do not enter the chroot jail
 --nossl signal that no SSL connections are available
 --notfound URL Redirect
 -P|--port TCPPORT listen to request on port TCPPORT
 --th-trace trace TH1 execution (for debugging purposes)
 --repolist If REPOSITORY is dir, URL "/" lists repos.
 --scgi Accept SCGI rather than HTTP
 --skin LABEL Use override skin LABEL

See also: cgi, http, winsrv

Figure 79: ui details
PAN-20100424

Revision: 1.80

15 November 2016 Page 68 of 107

Fossil Version Control

A Users Guide

5.2.16 server

This is a more powerful version of the ui command. This allows you to have multiple repositories
supported by a single running Fossil webserver. This way you start the server and instead of a
particular repository you specify a directory where a number of repositories reside (all having the
extension .fossil) then you can open and use any of them.

PAN-20100424

Revision: 1.80

15 November 2016 Page 69 of 107

Fossil Version Control

A Users Guide

525 ~> fossil help server
Usage: fossil server ?OPTIONS? ?REPOSITORY?
 or: fossil ui ?OPTIONS? ?REPOSITORY?

Open a socket and begin listening and responding to HTTP requests on
TCP port 8080, or on any other TCP port defined by the -P or
--port option. The optional argument is the name of the repository.
The repository argument may be omitted if the working directory is
within an open checkout.

The "ui" command automatically starts a web browser after initializing
the web server. The "ui" command also binds to 127.0.0.1 and so will
only process HTTP traffic from the local machine.

The REPOSITORY can be a directory (aka folder) that contains one or
more repositories with names ending in ".fossil". In this case, a
prefix of the URL pathname is used to search the directory for an
appropriate repository. To thwart mischief, the pathname in the URL must
contain only alphanumerics, "_", "/", "-", and ".", and no "-" may
occur after "/", and every "." must be surrounded on both sides by
alphanumerics. Any pathname that does not satisfy these constraints
results in a 404 error. Files in REPOSITORY that match the comma-separated
list of glob patterns given by --files and that have known suffixes
such as ".txt" or ".html" or ".jpeg" and do not match the pattern
"*.fossil*" will be served as static content. With the "ui" command,
the REPOSITORY can only be a directory if the --notfound option is
also present.

By default, the "ui" command provides full administrative access without
having to log in. This can be disabled by turning off the "localauth"
setting. Automatic login for the "server" command is available if the
--localauth option is present and the "localauth" setting is off and the
connection is from localhost. The "ui" command also enables --repolist
by default.

Options:
 --baseurl URL Use URL as the base (useful for reverse proxies)
 --create Create a new REPOSITORY if it does not already exist
 --page PAGE Start "ui" on PAGE. ex: --page "timeline?y=ci"
 --files GLOBLIST Comma-separated list of glob patterns for static files
 --localauth enable automatic login for requests from localhost
 --localhost listen on 127.0.0.1 only (always true for "ui")
 --https signal a request coming in via https
 --nojail Drop root privileges but do not enter the chroot jail
 --nossl signal that no SSL connections are available
 --notfound URL Redirect
 -P|--port TCPPORT listen to request on port TCPPORT
 --th-trace trace TH1 execution (for debugging purposes)
 --repolist If REPOSITORY is dir, URL "/" lists repos.
 --scgi Accept SCGI rather than HTTP
 --skin LABEL Use override skin LABEL

See also: cgi, http, winsrv

Figure 80: server detail
PAN-20100424

Revision: 1.80

15 November 2016 Page 70 of 107

Fossil Version Control

A Users Guide

5.2.17 commit or ci

This is the command used to put the current changes in the working directory into the repository,
giving this a new version and updating the timeline.

PAN-20100424

Revision: 1.80

15 November 2016 Page 71 of 107

Fossil Version Control

A Users Guide

526 ~> fossil help commit
Usage: fossil commit ?OPTIONS? ?FILE...?

Create a new version containing all of the changes in the current
checkout. You will be prompted to enter a check-in comment unless
the comment has been specified on the command-line using "-m" or a
file containing the comment using -M. The editor defined in the
"editor" fossil option (see fossil help set) will be used, or from
the "VISUAL" or "EDITOR" environment variables (in that order) if
no editor is set.

All files that have changed will be committed unless some subset of
files is specified on the command line.

The --branch option followed by a branch name causes the new
check-in to be placed in a newly-created branch with the name
passed to the --branch option.

Use the --branchcolor option followed by a color name (ex:
'#ffc0c0') to specify the background color of entries in the new
branch when shown in the web timeline interface. The use of
the --branchcolor option is not recommended. Instead, let Fossil
choose the branch color automatically.

The --bgcolor option works like --branchcolor but only sets the
background color for a single check-in. Subsequent check-ins revert
to the default color.

A check-in is not permitted to fork unless the --allow-fork option
appears. An empty check-in (i.e. with nothing changed) is not
allowed unless the --allow-empty option appears. A check-in may not
be older than its ancestor unless the --allow-older option appears.
If any of files in the check-in appear to contain unresolved merge
conflicts, the check-in will not be allowed unless the
--allow-conflict option is present. In addition, the entire
check-in process may be aborted if a file contains content that
appears to be binary, Unicode text, or text with CR/NL line endings
unless the interactive user chooses to proceed. If there is no
interactive user or these warnings should be skipped for some other
reason, the --no-warnings option may be used. A check-in is not
allowed against a closed leaf.

If a commit message is blank, you will be prompted:
("continue (y/N)?") to confirm you really want to commit with a
blank commit message. The default value is "N", do not commit.

The --private option creates a private check-in that is never synced.
Children of private check-ins are automatically private.

The --tag option applies the symbolic tag name to the check-in.

The --sha1sum option detects edited files by computing each file's
SHA1 hash rather than just checking for changes to its size or mtime.

Options:
 --allow-conflict allow unresolved merge conflicts
 --allow-empty allow a commit with no changes
 --allow-fork allow the commit to fork
 --allow-older allow a commit older than its ancestor
 --baseline use a baseline manifest in the commit process
 --bgcolor COLOR apply COLOR to this one check-in only
 --branch NEW-BRANCH-NAME check in to this new branch
 --branchcolor COLOR apply given COLOR to the branch
 --close close the branch being committed
 --delta use a delta manifest in the commit process
 --integrate close all merged-in branches
 -m|--comment COMMENT-TEXT use COMMENT-TEXT as commit comment
 -M|--message-file FILE read the commit comment from given file
 --mimetype MIMETYPE mimetype of check-in comment
 -n|--dry-run If given, display instead of run actions
 --no-prompt This option disables prompting the user for
 input and assumes an answer of 'No' for every
 question.
 --no-warnings omit all warnings about file contents
 --nosign do not attempt to sign this commit with gpg
 --private do not sync changes and their descendants
 --sha1sum verify file status using SHA1 hashing rather
 than relying on file mtimes
 --tag TAG-NAME assign given tag TAG-NAME to the check-in
 --date-override DATETIME DATE to use instead of 'now'
 --user-override USER USER to use instead of the current default

DATETIME may be "now" or "YYYY-MM-DDTHH:MM:SS.SSS". If in
year-month-day form, it may be truncated, the "T" may be replaced by
a space, and it may also name a timezone offset from UTC as "-HH:MM"
(westward) or "+HH:MM" (eastward). Either no timezone suffix or "Z"
means UTC.

See also: branch, changes, checkout, extras, sync

Figure 81: commit details

PAN-20100424

Revision: 1.80

15 November 2016 Page 72 of 107

Fossil Version Control

A Users Guide

It’s a very good idea to always put a comment (-comment or -m) text on any commit. This way you
get documentation in the timeline.

5.3 Maintenance commands

These commands you will probably use less often since the actions they perform are not needed in
normal operation. You will have to use them and referring here or to fossil help will probably be
required before use. Some of them like new or clone are only needed when you start a repository.
Others like rebuild or reconstruct are only needed to fix or update a repository.

5.3.1 new

This command is used to create a new repository.

PAN-20100424

Revision: 1.80

15 November 2016 Page 73 of 107

Fossil Version Control

A Users Guide

528 ~> fossil help new
Usage: fossil new ?OPTIONS? FILENAME
 or: fossil init ?OPTIONS? FILENAME

Create a repository for a new project in the file named FILENAME.
This command is distinct from "clone". The "clone" command makes
a copy of an existing project. This command starts a new project.

By default, your current login name is used to create the default
admin user. This can be overridden using the -A|--admin-user
parameter.

By default, all settings will be initialized to their default values.
This can be overridden using the --template parameter to specify a
repository file from which to copy the initial settings. When a template
repository is used, almost all of the settings accessible from the setup
page, either directly or indirectly, will be copied. Normal users and
their associated permissions will not be copied; however, the system
default users "anonymous", "nobody", "reader", "developer", and their
associated permissions will be copied.

Options:
 --template FILE copy settings from repository file
 --admin-user|-A USERNAME select given USERNAME as admin user
 --date-override DATETIME use DATETIME as time of the initial check-in

DATETIME may be "now" or "YYYY-MM-DDTHH:MM:SS.SSS". If in
year-month-day form, it may be truncated, the "T" may be replaced by
a space, and it may also name a timezone offset from UTC as "-HH:MM"
(westward) or "+HH:MM" (eastward). Either no timezone suffix or "Z"
means UTC.

See also: clone

Figure 82: new details

The file name specifies the new repository name. The options provided allow you to specify the
admin user name if you want it to be different than your current login and the starting date if you
want it to be different than now.

5.3.2 clone

The clone command is used to create your own local version of the master repository. If you are sup-
porting multiple users via a network accessible version of the original repository (see Section 3.2.1
on page 28), then this command will copy that repository to your machine. Also it will make a link
between your copy and the master, so that changes made in your copy will be propagated to the
master.

PAN-20100424

Revision: 1.80

15 November 2016 Page 74 of 107

Fossil Version Control

A Users Guide

529 ~> fossil help clone
Usage: fossil clone ?OPTIONS? URI FILENAME

Make a clone of a repository specified by URI in the local
file named FILENAME.

URI may be one of the following form: ([...] mean optional)
 HTTP/HTTPS protocol:
 http[s]://[userid[:password]@]host[:port][/path]

 SSH protocol:
 ssh://[userid@]host[:port]/path/to/repo.fossil\
 [?fossil=path/to/fossil.exe]

 Filesystem:
 [file://]path/to/repo.fossil

Note 1: For ssh and filesystem, path must have an extra leading
 '/' to use an absolute path.

Note 2: Use %HH escapes for special characters in the userid and
 password. For example "%40" in place of "@", "%2f" in place
 of "/", and "%3a" in place of ":".

By default, your current login name is used to create the default
admin user. This can be overridden using the -A|--admin-user
parameter.

Options:
 --admin-user|-A USERNAME Make USERNAME the administrator
 --once Don't remember the URI.
 --private Also clone private branches
 --ssl-identity FILENAME Use the SSL identity if requested by the server
 --ssh-command|-c SSH Use SSH as the "ssh" command
 --httpauth|-B USER:PASS Add HTTP Basic Authorization to requests
 -u|--unversioned Also sync unversioned content
 -v|--verbose Show more statistics in output

See also: init

Figure 83: clone details

Just like create you can specify the admin user for this clone with an option. The URL for the master
repository is of the form:

http://<user>:<password>@domain

Where user and password are for a valid user of the selected repository. It is best to check the path
with a browser before doing the clone. Make sure you can reach it, for example the repository for
this book is:

PAN-20100424

Revision: 1.80

15 November 2016 Page 75 of 107

Fossil Version Control

A Users Guide

http://pandora.dyn-o-saur.com:8080/cgi-bin/Book.cgi

Putting that into a browser should get you the home page for this book. (See Figure 29 on page 30).
After you have verified that, then running the clone command should work.

Don’t forget (as I always do) to put in the file name for the local repository, (see FILENAME above)

5.3.3 open

The open command is used to copy the files in a repository to a working directory. Doing this allows
you to build or modify the product. The command also links this working directory to the repository
so commits will go into the repository.

530 ~> fossil help open
Usage: fossil open FILENAME ?VERSION? ?OPTIONS?

Open a connection to the local repository in FILENAME. A checkout
for the repository is created with its root at the working directory.
If VERSION is specified then that version is checked out. Otherwise
the latest version is checked out. No files other than "manifest"
and "manifest.uuid" are modified if the --keep option is present.

Options:
 --empty Initialize checkout as being empty, but still connected
 with the local repository. If you commit this checkout,
 it will become a new "initial" commit in the repository.
 --keep Only modify the manifest and manifest.uuid files
 --nested Allow opening a repository inside an opened checkout
 --force-missing Force opening a repository with missing content

See also: close

Figure 84: open details

If you have multiple users or have a branched repository then it is probably wise to specify the
particular version you want. When you run this it will create all the files and directories in the
repository in your work area. In addition the files _FOSSIL_, manifest and manifest.uuid will be
created by Fossil.

5.3.4 close

This is the opposite of open, in that it breaks the connection between this working directory and the
Fossil repository.

PAN-20100424

Revision: 1.80

15 November 2016 Page 76 of 107

Fossil Version Control

A Users Guide

530 ~> fossil help open
Usage: fossil open FILENAME ?VERSION? ?OPTIONS?

Open a connection to the local repository in FILENAME. A checkout
for the repository is created with its root at the working directory.
If VERSION is specified then that version is checked out. Otherwise
the latest version is checked out. No files other than "manifest"
and "manifest.uuid" are modified if the --keep option is present.

Options:
 --empty Initialize checkout as being empty, but still connected
 with the local repository. If you commit this checkout,
 it will become a new "initial" commit in the repository.
 --keep Only modify the manifest and manifest.uuid files
 --nested Allow opening a repository inside an opened checkout
 --force-missing Force opening a repository with missing content

See also: close
531 ~> fossil help close
Usage: fossil close ?OPTIONS?

The opposite of "open". Close the current database connection.
Require a -f or --force flag if there are unsaved changes in the
current check-out or if there is non-empty stash.

Options:
 --force|-f necessary to close a check out with uncommitted changes

See also: open

Figure 85: close details

This is useful if you need to abandon the current working directory. Fossil will not let you do this
if there are changes between the current directory and the repository. With the force flag you can
explicitly cut the connection even if there are changes.

5.3.5 version

This command is used to show the current version of fossil.

PAN-20100424

Revision: 1.80

15 November 2016 Page 77 of 107

Fossil Version Control

A Users Guide

532 ~> fossil help version
Usage: fossil version ?-verbose|-v?

Print the source code version number for the fossil executable.
If the verbose option is specified, additional details will
be output about what optional features this binary was compiled
with

Figure 86: version details

The above figure shows the help and example of running the command. When you have problems
with fossil it is very important to have this version information. You can then inquire of the Fossil
news group about this problem and with the version information they can easily tell you if the
problem is fixed already or is new.

5.3.6 rebuild

If you update your copy of Fossil you will want to run this command against all the repositories you
have. This will automatically update them to the new version of Fossil.

PAN-20100424

Revision: 1.80

15 November 2016 Page 78 of 107

Fossil Version Control

A Users Guide

533 ~> fossil help rebuild
Usage: fossil rebuild ?REPOSITORY? ?OPTIONS?

Reconstruct the named repository database from the core
records. Run this command after updating the fossil
executable in a way that changes the database schema.

Options:
 --analyze Run ANALYZE on the database after rebuilding
 --cluster Compute clusters for unclustered artifacts
 --compress Strive to make the database as small as possible
 --compress-only Skip the rebuilding step. Do --compress only
 --deanalyze Remove ANALYZE tables from the database
 --force Force the rebuild to complete even if errors are seen
 --ifneeded Only do the rebuild if it would change the schema version
 --index Always add in the full-text search index
 --noverify Skip the verification of changes to the BLOB table
 --noindex Always omit the full-text search index
 --pagesize N Set the database pagesize to N. (512..65536 and power of 2)
 --quiet Only show output if there are errors
 --randomize Scan artifacts in a random order
 --stats Show artifact statistics after rebuilding
 --vacuum Run VACUUM on the database after rebuilding
 --wal Set Write-Ahead-Log journalling mode on the database

See also: deconstruct, reconstruct

Figure 87: rebuild details

5.3.7 all

This command is actually a modifier and when used before certain commands will run them on all
the repositories.

PAN-20100424

Revision: 1.80

15 November 2016 Page 79 of 107

Fossil Version Control

A Users Guide

534 ~> fossil help all
Usage: fossil all SUBCOMMAND ...

The ~/.fossil file records the location of all repositories for a
user. This command performs certain operations on all repositories
that can be useful before or after a period of disconnected operation.

On Win32 systems, the file is named "_fossil" and is located in
%LOCALAPPDATA%, %APPDATA% or %HOMEPATH%.

Available operations are:

 cache Manages the cache used for potentially expensive web
 pages. Any additional arguments are passed on verbatim
 to the cache command.

 changes Shows all local checkouts that have uncommitted changes.
 This operation has no additional options.

 clean Delete all "extra" files in all local checkouts. Extreme
 caution should be exercised with this command because its
 effects cannot be undone. Use of the --dry-run option to
 carefully review the local checkouts to be operated upon
 and the --whatif option to carefully review the files to
 be deleted beforehand is highly recommended. The command
 line options supported by the clean command itself, if any
 are present, are passed along verbatim.

 config Only the "config pull AREA" command works.

 dbstat Run the "dbstat" command on all repositories.

 extras Shows "extra" files from all local checkouts. The command
 line options supported by the extra command itself, if any
 are present, are passed along verbatim.

 fts-config Run the "fts-config" command on all repositories.

 info Run the "info" command on all repositories.

 pull Run a "pull" operation on all repositories. Only the
 --verbose option is supported.

 push Run a "push" on all repositories. Only the --verbose
 option is supported.

 rebuild Rebuild on all repositories. The command line options
 supported by the rebuild command itself, if any are
 present, are passed along verbatim. The --force and
 --randomize options are not supported.

 sync Run a "sync" on all repositories. Only the --verbose
 option is supported.

 setting Run the "setting", "set", or "unset" commands on all
 set repositories. These command are particularly useful in
 unset conjunction with the "max-loadavg" setting which cannot
 otherwise be set globally.

In addition, the following maintenance operations are supported:

 add Add all the repositories named to the set of repositories
 tracked by Fossil. Normally Fossil is able to keep up with
 this list by itself, but sometimes it can benefit from this
 hint if you rename repositories.

 ignore Arguments are repositories that should be ignored by
 subsequent clean, extras, list, pull, push, rebuild, and
 sync operations. The -c|--ckout option causes the listed
 local checkouts to be ignored instead.

 list | ls Display the location of all repositories. The -c|--ckout
 option causes all local checkouts to be listed instead.

Repositories are automatically added to the set of known repositories
when one of the following commands are run against the repository:
clone, info, pull, push, or sync. Even previously ignored repositories
are added back to the list of repositories by these commands.

Options:
 --showfile Show the repository or checkout being operated upon.
 --dontstop Continue with other repositories even after an error.
 --dry-run If given, display instead of run actions.

Figure 88: all details

PAN-20100424

Revision: 1.80

15 November 2016 Page 80 of 107

Fossil Version Control

A Users Guide

5.3.8 push

This command will push changes in the local repository to the master or remote repository.

535 ~> fossil help push
Usage: fossil push ?URL? ?options?

Push all sharable changes from the local repository to a remote repository.
Sharable changes include public check-ins, and wiki, ticket, and tech-note
edits. Use --private to also push private branches. Use the
"configuration push" command to push website configuration details.

If URL is not specified, then the URL from the most recent clone, push,
pull, remote-url, or sync command is used. See "fossil help clone" for
details on the URL formats.

Options:

 -B|--httpauth USER:PASS Credentials for the simple HTTP auth protocol,
 if required by the remote website
 --ipv4 Use only IPv4, not IPv6
 --once Do not remember URL for subsequent syncs
 --proxy PROXY Use the specified HTTP proxy
 --private Push private branches too
 -R|--repository REPO Repository to pull into
 --ssl-identity FILE Local SSL credentials, if requested by remote
 --ssh-command SSH Use SSH as the "ssh" command
 -v|--verbose Additional (debugging) output
 --verily Exchange extra information with the remote
 to ensure no content is overlooked

See also: clone, config push, pull, remote-url, sync

Figure 89: push details

5.3.9 pull

This command will copy changes from the remote repository to the local repository. You could then
use update to apply these changes to checked out files.

PAN-20100424

Revision: 1.80

15 November 2016 Page 81 of 107

Fossil Version Control

A Users Guide

536 ~> fossil help pull
Usage: fossil pull ?URL? ?options?

Pull all sharable changes from a remote repository into the local repository.
Sharable changes include public check-ins, and wiki, ticket, and tech-note
edits. Add the --private option to pull private branches. Use the
"configuration pull" command to pull website configuration details.

If URL is not specified, then the URL from the most recent clone, push,
pull, remote-url, or sync command is used. See "fossil help clone" for
details on the URL formats.

Options:

 -B|--httpauth USER:PASS Credentials for the simple HTTP auth protocol,
 if required by the remote website
 --from-parent-project Pull content from the parent project
 --ipv4 Use only IPv4, not IPv6
 --once Do not remember URL for subsequent syncs
 --proxy PROXY Use the specified HTTP proxy
 --private Pull private branches too
 -R|--repository REPO Repository to pull into
 --ssl-identity FILE Local SSL credentials, if requested by remote
 --ssh-command SSH Use SSH as the "ssh" command
 -v|--verbose Additional (debugging) output
 --verily Exchange extra information with the remote
 to ensure no content is overlooked

See also: clone, config pull, push, remote-url, sync

Figure 90: pull details

5.3.10 sync

This command is used to sync a remote copy with the original copy of the repository, it does both
a push and pull. This can also be used to switch a local repository to a different main repository by
specifying the URL of a remote repository. If you want to run the update command with -n where
it does a dry run, this does not do a sync first so doing fossil sync then fossil update -n will do that
for you.

PAN-20100424

Revision: 1.80

15 November 2016 Page 82 of 107

Fossil Version Control

A Users Guide

537 ~> fossil help sync
Usage: fossil sync ?URL? ?options?

Synchronize all sharable changes between the local repository and a
remote repository. Sharable changes include public check-ins and
edits to wiki pages, tickets, and technical notes.

If URL is not specified, then the URL from the most recent clone, push,
pull, remote-url, or sync command is used. See "fossil help clone" for
details on the URL formats.

Options:

 -B|--httpauth USER:PASS Credentials for the simple HTTP auth protocol,
 if required by the remote website
 --ipv4 Use only IPv4, not IPv6
 --once Do not remember URL for subsequent syncs
 --proxy PROXY Use the specified HTTP proxy
 --private Sync private branches too
 -R|--repository REPO Repository to pull into
 --ssl-identity FILE Local SSL credentials, if requested by remote
 --ssh-command SSH Use SSH as the "ssh" command
 -u|--unversioned Also sync unversioned content
 -v|--verbose Additional (debugging) output
 --verily Exchange extra information with the remote
 to ensure no content is overlooked

See also: clone, pull, push, remote-url

Figure 91: sync details

5.3.11 clean

This call can be used to remove all the “extra” files in a source tree. This is useful if you wish to
tidy up a source tree or to do a clean build.

PAN-20100424

Revision: 1.80

15 November 2016 Page 83 of 107

Fossil Version Control

A Users Guide

538 ~> fossil help clean
Usage: fossil clean ?OPTIONS? ?PATH ...?

Delete all "extra" files in the source tree. "Extra" files are files
that are not officially part of the checkout. If one or more PATH
arguments appear, then only the files named, or files contained with
directories named, will be removed.

If the --prompt option is used, prompts are issued to confirm the
permanent removal of each file. Otherwise, files are backed up to the
undo buffer prior to removal, and prompts are issued only for files
whose removal cannot be undone due to their large size or due to
--disable-undo being used.

The --force option treats all prompts as having been answered yes,
whereas --no-prompt treats them as having been answered no.

Files matching any glob pattern specified by the --clean option are
deleted without prompting, and the removal cannot be undone.

No file that matches glob patterns specified by --ignore or --keep will
ever be deleted. Files and subdirectories whose names begin with "."
are automatically ignored unless the --dotfiles option is used.

The default values for --clean, --ignore, and --keep are determined by
the (versionable) clean-glob, ignore-glob, and keep-glob settings.

The --verily option ignores the keep-glob and ignore-glob settings and
turns on --force, --emptydirs, --dotfiles, and --disable-undo. Use the
--verily option when you really want to clean up everything. Extreme
care should be exercised when using the --verily option.

Options:
 --allckouts Check for empty directories within any checkouts
 that may be nested within the current one. This
 option should be used with great care because the
 empty-dirs setting (and other applicable settings)
 belonging to the other repositories, if any, will
 not be checked.
 --case-sensitive <BOOL> override case-sensitive setting
 --dirsonly Only remove empty directories. No files will
 be removed. Using this option will automatically
 enable the --emptydirs option as well.
 --disable-undo WARNING: This option disables use of the undo
 mechanism for this clean operation and should be
 used with extreme caution.
 --dotfiles Include files beginning with a dot (".").
 --emptydirs Remove any empty directories that are not
 explicitly exempted via the empty-dirs setting
 or another applicable setting or command line
 argument. Matching files, if any, are removed
 prior to checking for any empty directories;
 therefore, directories that contain only files
 that were removed will be removed as well.
 -f|--force Remove files without prompting.
 -i|--prompt Prompt before removing each file. This option
 implies the --disable-undo option.
 -x|--verily WARNING: Removes everything that is not a managed
 file or the repository itself. This option
 implies the --force, --emptydirs, --dotfiles, and
 --disable-undo options. Furthermore, it completely
 disregards the keep-glob and ignore-glob settings.
 However, it does honor the --ignore and --keep
 options.
 --clean <CSG> WARNING: Never prompt to delete any files matching
 this comma separated list of glob patterns. Also,
 deletions of any files matching this pattern list
 cannot be undone.
 --ignore <CSG> Ignore files matching patterns from the
 comma separated list of glob patterns.
 --keep <CSG> Keep files matching this comma separated
 list of glob patterns.
 -n|--dry-run Delete nothing, but display what would have been
 deleted.
 --no-prompt This option disables prompting the user for input
 and assumes an answer of 'No' for every question.
 --temp Remove only Fossil-generated temporary files.
 -v|--verbose Show all files as they are removed.

See also: addremove, extras, status

Figure 92: clean details

PAN-20100424

Revision: 1.80

15 November 2016 Page 84 of 107

Fossil Version Control

A Users Guide

5.3.12 branch

This command is used if you want to create or list branches in a repository. Previously we discussed
forks (See Section 3.4.3 on page 35); branches are the same idea but under user control. This would
be where you have version 1.0 of something but want to branch off version 2.0 to add new features
but want to keep a 1.0 branch for maintenance.

539 ~> fossil help branch
Usage: fossil branch SUBCOMMAND ... ?OPTIONS?

Run various subcommands to manage branches of the open repository or
of the repository identified by the -R or --repository option.

 fossil branch new BRANCH-NAME BASIS ?OPTIONS?

 Create a new branch BRANCH-NAME off of check-in BASIS.
 Supported options for this subcommand include:
 --private branch is private (i.e., remains local)
 --bgcolor COLOR use COLOR instead of automatic background
 --nosign do not sign contents on this branch
 --date-override DATE DATE to use instead of 'now'
 --user-override USER USER to use instead of the current default

 DATE may be "now" or "YYYY-MM-DDTHH:MM:SS.SSS". If in
 year-month-day form, it may be truncated, the "T" may be
 replaced by a space, and it may also name a timezone offset
 from UTC as "-HH:MM" (westward) or "+HH:MM" (eastward).
 Either no timezone suffix or "Z" means UTC.

 fossil branch list ?-a|--all|-c|--closed?
 fossil branch ls ?-a|--all|-c|--closed?

 List all branches. Use -a or --all to list all branches and
 -c or --closed to list all closed branches. The default is to
 show only open branches.

Options:
 -R|--repository FILE Run commands on repository FILE

Figure 93: branch details

5.3.13 merge

This command does the opposite of branch, it brings two branches together.

PAN-20100424

Revision: 1.80

15 November 2016 Page 85 of 107

Fossil Version Control

A Users Guide

540 ~> fossil help merge
Usage: fossil merge ?OPTIONS? ?VERSION?

The argument VERSION is a version that should be merged into the
current checkout. All changes from VERSION back to the nearest
common ancestor are merged. Except, if either of the --cherrypick or
--backout options are used only the changes associated with the
single check-in VERSION are merged. The --backout option causes
the changes associated with VERSION to be removed from the current
checkout rather than added.

If the VERSION argument is omitted, then Fossil attempts to find
a recent fork on the current branch to merge.

Only file content is merged. The result continues to use the
file and directory names from the current checkout even if those
names might have been changed in the branch being merged in.

Other options:

 --baseline BASELINE Use BASELINE as the "pivot" of the merge instead
 of the nearest common ancestor. This allows
 a sequence of changes in a branch to be merged
 without having to merge the entire branch.

 --binary GLOBPATTERN Treat files that match GLOBPATTERN as binary
 and do not try to merge parallel changes. This
 option overrides the "binary-glob" setting.

 --case-sensitive BOOL Override the case-sensitive setting. If false,
 files whose names differ only in case are taken
 to be the same file.

 -f|--force Force the merge even if it would be a no-op.

 --force-missing Force the merge even if there is missing content.

 --integrate Merged branch will be closed when committing.

 -n|--dry-run If given, display instead of run actions

 -v|--verbose Show additional details of the merge

Figure 94: merge details

5.3.14 tag

This command can be used to control “tags” which are attributes added to any entry in the time line.
You can also add/delete/control these tags from the UI by going into the timeline, picking an entry
then doing an edit. See Figure ?? on page ??.

PAN-20100424

Revision: 1.80

15 November 2016 Page 86 of 107

Fossil Version Control

A Users Guide

541 ~> fossil help tag
Usage: fossil tag SUBCOMMAND ...

Run various subcommands to control tags and properties.

 fossil tag add ?OPTIONS? TAGNAME CHECK-IN ?VALUE?

 Add a new tag or property to CHECK-IN. The tag will
 be usable instead of a CHECK-IN in commands such as
 update and merge. If the --propagate flag is present,
 the tag value propagates to all descendants of CHECK-IN

 Options:
 --raw Raw tag name.
 --propagate Propagating tag.
 --date-override DATETIME Set date and time added.
 --user-override USER Name USER when adding the tag.
 --dryrun|-n Display the tag text, but to not
 actually insert it into the database.

 The --date-override and --user-override options support
 importing history from other SCM systems. DATETIME has
 the form 'YYYY-MMM-DD HH:MM:SS'.

 fossil tag cancel ?--raw? TAGNAME CHECK-IN

 Remove the tag TAGNAME from CHECK-IN, and also remove
 the propagation of the tag to any descendants. Use the
 the --dryrun or -n options to see what would have happened.

 fossil tag find ?OPTIONS? TAGNAME

 List all objects that use TAGNAME. TYPE can be "ci" for
 check-ins or "e" for events. The limit option limits the number
 of results to the given value.

 Options:
 --raw Raw tag name.
 -t|--type TYPE One of "ci", or "e".
 -n|--limit N Limit to N results.

 fossil tag list|ls ?--raw? ?CHECK-IN?

 List all tags, or if CHECK-IN is supplied, list
 all tags and their values for CHECK-IN.

The option --raw allows the manipulation of all types of tags
used for various internal purposes in fossil. It also shows
"cancel" tags for the "find" and "list" subcommands. You should
not use this option to make changes unless you are sure what
you are doing.

If you need to use a tagname that might be confused with
a hexadecimal baseline or artifact ID, you can explicitly
disambiguate it by prefixing it with "tag:". For instance:

 fossil update decaf

will be taken as an artifact or baseline ID and fossil will
probably complain that no such revision was found. However

 fossil update tag:decaf

will assume that "decaf" is a tag/branch name.

Figure 95: tag details

PAN-20100424

Revision: 1.80

15 November 2016 Page 87 of 107

Fossil Version Control

A Users Guide

5.3.15 settings

This command is used to set or unset a number of properties for fossil.

PAN-20100424

Revision: 1.80

15 November 2016 Page 88 of 107

Fossil Version Control

A Users Guide

542 ~> fossil help settings
Usage: fossil settings ?PROPERTY? ?VALUE? ?OPTIONS?
 or: fossil unset PROPERTY ?OPTIONS?

The "settings" command with no arguments lists all properties and their
values. With just a property name it shows the value of that property.
With a value argument it changes the property for the current repository.

Settings marked as versionable are overridden by the contents of the
file named .fossil-settings/PROPERTY in the check-out root, if that
file exists.

The "unset" command clears a property setting.

 access-log If enabled, record successful and failed login attempts
 in the "accesslog" table. Default: off

 admin-log If enabled, record configuration changes in the
 "admin_log" table. Default: off

 allow-symlinks If enabled, don't follow symlinks, and instead treat
 (versionable) them as symlinks on Unix. Has no effect on Windows
 (existing links in repository created on Unix become
 plain-text files with link destination path inside).
 Default: off

 auto-captcha If enabled, the Login page provides a button to
 fill in the captcha password. Default: on

 auto-hyperlink Use javascript to enable hyperlinks on web pages
 for all users (regardless of the "h" privilege) if the
 User-Agent string in the HTTP header look like it came
 from real person, not a spider or bot. Default: on

 auto-shun If enabled, automatically pull the shunning list
 from a server to which the client autosyncs.
 Default: on

 autosync If enabled, automatically pull prior to commit
 or update and automatically push after commit or
 tag or branch creation. If the value is "pullonly"
 then only pull operations occur automatically.
 Default: on

 autosync-tries If autosync is enabled setting this to a value greater
 than zero will cause autosync to try no more than this
 number of attempts if there is a sync failure.
 Default: 1

 binary-glob The VALUE is a comma or newline-separated list of
 (versionable) GLOB patterns that should be treated as binary files
 for committing and merging purposes. Example: *.jpg

 case-sensitive If TRUE, the files whose names differ only in case
 are considered distinct. If FALSE files whose names
 differ only in case are the same file. Defaults to
 TRUE for unix and FALSE for Cygwin, Mac and Windows.

 clean-glob The VALUE is a comma or newline-separated list of GLOB
 (versionable) patterns specifying files that the "clean" command will
 delete without prompting or allowing undo.
 Example: *.a,*.lib,*.o

 clearsign When enabled, fossil will attempt to sign all commits
 with gpg. When disabled (the default), commits will
 be unsigned. Default: off

 crnl-glob A comma or newline-separated list of GLOB patterns for
 (versionable) text files in which it is ok to have CR, CR+NL or mixed
 line endings. Set to "*" to disable CR+NL checking.

 default-perms Permissions given automatically to new users. For more
 information on permissions see Users page in Server
 Administration of the HTTP UI. Default: u.

 diff-binary If TRUE (the default), permit files that may be binary
 or that match the "binary-glob" setting to be used with
 external diff programs. If FALSE, skip these files.

 diff-command External command to run when performing a diff.
 If undefined, the internal text diff will be used.

 dont-push Prevent this repository from pushing from client to
 server. Useful when setting up a private branch.

 dotfiles Include --dotfiles option for all compatible commands.
 (versionable)

 editor Text editor command used for check-in comments.

 empty-dirs A comma or newline-separated list of pathnames. On
 (versionable) update and checkout commands, if no file or directory
 exists with that name, an empty directory will be
 created.

 encoding-glob The VALUE is a comma or newline-separated list of GLOB
 (versionable) patterns specifying files that the "commit" command will
 ignore when issuing warnings about text files that may
 use another encoding than ASCII or UTF-8. Set to "*"
 to disable encoding checking.

 exec-rel-paths When executing certain external commands (e.g. diff and
 gdiff), use relative paths.

 gdiff-command External command to run when performing a graphical
 diff. If undefined, text diff will be used.

 gmerge-command A graphical merge conflict resolver command operating
 on four files.
 Ex: kdiff3 "%baseline" "%original" "%merge" -o "%output"
 Ex: xxdiff "%original" "%baseline" "%merge" -M "%output"
 Ex: meld "%baseline" "%original" "%merge" "%output"

 hash-digits The number of hexadecimal digits of the SHA1 hash to
 display. (Default: 10; Minimum: 6)

 http-port The TCP/IP port number to use by the "server"
 and "ui" commands. Default: 8080

 https-login Send login credentials using HTTPS instead of HTTP
 even if the login page request came via HTTP.

 ignore-glob The VALUE is a comma or newline-separated list of GLOB
 (versionable) patterns specifying files that the "add", "addremove",
 "clean", and "extra" commands will ignore.
 Example: *.log customCode.c notes.txt

 keep-glob The VALUE is a comma or newline-separated list of GLOB
 (versionable) patterns specifying files that the "clean" command will
 keep.

 localauth If enabled, require that HTTP connections from
 127.0.0.1 be authenticated by password. If
 false, all HTTP requests from localhost have
 unrestricted access to the repository.

 main-branch The primary branch for the project. Default: trunk

 manifest If set to a true boolean value, automatically create
 (versionable) files "manifest" and "manifest.uuid" in every checkout.
 Optionally use combinations of characters 'r'
 for "manifest", 'u' for "manifest.uuid" and 't' for
 "manifest.tags". The SQLite and Fossil repositories
 both require manifests. Default: off.

 max-loadavg Some CPU-intensive web pages (ex: /zip, /tarball, /blame)
 are disallowed if the system load average goes above this
 value. "0.0" means no limit. This only works on unix.
 Only local settings of this value make a difference since
 when running as a web-server, Fossil does not open the
 global configuration database.

 max-upload A limit on the size of uplink HTTP requests. The
 default is 250000 bytes.

 mtime-changes Use file modification times (mtimes) to detect when
 files have been modified. (Default "on".)

 mv-rm-files If enabled (and Fossil was compiled with legacy "mv/rm"
 support), the "mv" and "rename" commands will also move
 the associated files within the checkout -AND- the "rm"
 and "delete" commands will also remove the associated
 files from within the checkout. Default: off.

 pgp-command Command used to clear-sign manifests at check-in.
 The default is "gpg --clearsign -o ".

 proxy URL of the HTTP proxy. If undefined or "off" then
 the "http_proxy" environment variable is consulted.
 If the http_proxy environment variable is undefined
 then a direct HTTP connection is used.

 relative-paths When showing changes and extras, report paths relative
 to the current working directory. Default: "on"

 repo-cksum Compute checksums over all files in each checkout
 as a double-check of correctness. Defaults to "on".
 Disable on large repositories for a performance
 improvement.

 self-register Allow users to register themselves through the HTTP UI.
 This is useful if you want to see other names than
 "Anonymous" in e.g. ticketing system. On the other hand
 users can not be deleted. Default: off.

 ssh-command Command used to talk to a remote machine with
 the "ssh://" protocol.

 ssl-ca-location The full pathname to a file containing PEM encoded
 CA root certificates, or a directory of certificates
 with filenames formed from the certificate hashes as
 required by OpenSSL.
 If set, this will override the OS default list of
 OpenSSL CAs. If unset, the default list will be used.
 Some platforms may add additional certificates.
 Checking your platform behaviour is required if the
 exact contents of the CA root is critical for your
 application.

 ssl-identity The full pathname to a file containing a certificate
 and private key in PEM format. Create by concatenating
 the certificate and private key files.
 This identity will be presented to SSL servers to
 authenticate this client, in addition to the normal
 password authentication.

 tcl If enabled (and Fossil was compiled with Tcl support),
 Tcl integration commands will be added to the TH1
 interpreter, allowing arbitrary Tcl expressions and
 scripts to be evaluated from TH1. Additionally, the Tcl
 interpreter will be able to evaluate arbitrary TH1
 expressions and scripts. Default: off.

 tcl-setup This is the setup script to be evaluated after creating
 (versionable) and initializing the Tcl interpreter. By default, this
 is empty and no extra setup is performed.

 th1-docs WARNING: If enabled (and Fossil was compiled with TH1
 support for embedded documentation files), this allows
 embedded documentation files to contain arbitrary TH1
 scripts that are evaluated on the server. If native
 Tcl integration is also enabled, this setting has the
 potential to allow anybody with check-in privileges to
 do almost anything that the associated operating system
 user account could do. Extreme caution should be used
 when enabling this setting. Default: off.

 th1-hooks If enabled (and Fossil was compiled with support for TH1
 hooks), special TH1 commands will be called before and
 after any Fossil command or web page. Default: off.

 th1-setup This is the setup script to be evaluated after creating
 (versionable) and initializing the TH1 interpreter. By default, this
 is empty and no extra setup is performed.

 th1-uri-regexp Specify which URI's are allowed in HTTP requests from
 (versionable) TH1 scripts. If empty, no HTTP requests are allowed
 whatsoever. The default is an empty string.

 uv-sync If true, automatically send unversioned files as part
 of a "fossil clone" or "fossil sync" command. The
 default is false, in which case the -u option is
 needed to clone or sync unversioned files.

 web-browser A shell command used to launch your preferred
 web browser when given a URL as an argument.
 Defaults to "start" on windows, "open" on Mac,
 and "firefox" on Unix.

Options:
 --global set or unset the given property globally instead of
 setting or unsetting it for the open repository only.

 --exact only consider exact name matches.

See also: configuration

Figure 96: settings details

PAN-20100424

Revision: 1.80

15 November 2016 Page 89 of 107

Fossil Version Control

A Users Guide

5.4 Miscellaneous

These are commands that don’t seem to fit in any category but are useful.

5.4.1 zip

You can do what this command does from the web based user interface. In Figure 13 on page 17
you can download a ZIP archive of the particular version of the files. This command lets you do it
from the command line.

543 ~> fossil help zip
Usage: fossil zip VERSION OUTPUTFILE [OPTIONS]

Generate a ZIP archive for a check-in. If the --name option is
used, its argument becomes the name of the top-level directory in the
resulting ZIP archive. If --name is omitted, the top-level directory
name is derived from the project name, the check-in date and time, and
the artifact ID of the check-in.

The GLOBLIST argument to --exclude and --include can be a comma-separated
list of glob patterns, where each glob pattern may optionally be enclosed
in "..." or '...' so that it may contain commas. If a file matches both
--include and --exclude then it is excluded.

Options:
 -X|--exclude GLOBLIST Comma-separated list of GLOBs of files to exclude
 --include GLOBLIST Comma-separated list of GLOBs of files to include
 --name DIRECTORYNAME The name of the top-level directory in the archive
 -R REPOSITORY Specify a Fossil repository

Figure 97: zip detail

5.4.2 user

This command lets you modify user information. Again this is a command line duplication of what
you can do from the user interface in the browser, see Figure 30 on page 31.

PAN-20100424

Revision: 1.80

15 November 2016 Page 90 of 107

Fossil Version Control

A Users Guide

544 ~> fossil help user
Usage: fossil user SUBCOMMAND ... ?-R|--repository FILE?

Run various subcommands on users of the open repository or of
the repository identified by the -R or --repository option.

 fossil user capabilities USERNAME ?STRING?

 Query or set the capabilities for user USERNAME

 fossil user default ?USERNAME?

 Query or set the default user. The default user is the
 user for command-line interaction.

 fossil user list
 fossil user ls

 List all users known to the repository

 fossil user new ?USERNAME? ?CONTACT-INFO? ?PASSWORD?

 Create a new user in the repository. Users can never be
 deleted. They can be denied all access but they must continue
 to exist in the database.

 fossil user password USERNAME ?PASSWORD?

 Change the web access password for a user.

Figure 98: user detail

5.4.3 finfo

This command will print the history of any particular file. This can be useful if you need this history
in some other system. You can pass this text file to the other system which can than parse and use
the data.

PAN-20100424

Revision: 1.80

15 November 2016 Page 91 of 107

Fossil Version Control

A Users Guide

545 ~> fossil help finfo
Usage: fossil finfo ?OPTIONS? FILENAME

Print the complete change history for a single file going backwards
in time. The default mode is -l.

For the -l|--log mode: If "-b|--brief" is specified one line per revision
is printed, otherwise the full comment is printed. The "-n|--limit N"
and "--offset P" options limits the output to the first N changes
after skipping P changes.

In the -s mode prints the status as <status> <revision>. This is
a quick status and does not check for up-to-date-ness of the file.

In the -p mode, there's an optional flag "-r|--revision REVISION".
The specified version (or the latest checked out version) is printed
to stdout. The -p mode is another form of the "cat" command.

Options:
 -b|--brief display a brief (one line / revision) summary
 --case-sensitive B Enable or disable case-sensitive filenames. B is a
 boolean: "yes", "no", "true", "false", etc.
 -l|--log select log mode (the default)
 -n|--limit N Display the first N changes (default unlimited).
 N<=0 means no limit.
 --offset P skip P changes
 -p|--print select print mode
 -r|--revision R print the given revision (or ckout, if none is given)
 to stdout (only in print mode)
 -s|--status select status mode (print a status indicator for FILE)
 -W|--width <num> Width of lines (default is to auto-detect). Must be
 >22 or 0 (= no limit, resulting in a single line per
 entry).

See also: artifact, cat, descendants, info, leaves

Figure 99: finfo detail

An example would be to run it on the outline.txt file in our book directory:

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil finfo outline.txt
History of outline.txt
2010-05-17 [0272dc0169] Finished maintenance commands (user: jim, artifact:

[25b6e38e97])
2010-05-12 [5e5c0f7d55] End of day commit (user: jim, artifact: [d1a1d31fbd])
2010-05-10 [e924ca3525] End of day update (user: jim, artifact: [7cd19079a1])
2010-05-09 [0abb95b046] Intermediate commit, not done with basic commands

(user: jim, artifact: [6f7bcd48b9])
2010-05-07 [6921e453cd] Update outline & book corrections (user: jim,

artifact: [4eff85c793])
2010-05-03 [158492516c] Moved to clone repository (user: jim, artifact:

[23b729cb66])
2010-05-03 [1a403c87fc] Update before moving to server (user: jim, artifact:

PAN-20100424

Revision: 1.80

15 November 2016 Page 92 of 107

Fossil Version Control

A Users Guide

[706a9d394d])
2010-04-30 [fa5b9247bd] Working on chapter 1 (user: jim, artifact:

[7bb188f0c6])
2010-04-29 [51be6423a3] Update outline (user: jim, artifact: [7cd39dfa06])
2010-04-27 [39bc728527] [1665c78d94] Ticket Use (user: jim, artifact:

[1f82aaf41c])
2010-04-26 [497b93858f] Update to catch changes in outline (user: jim,

artifact: [b870231e48])
2010-04-25 [8fa0708186] Initial Commit (user: jim, artifact: [34a460a468])
[Pandora-2:jschimpf/Public/FossilBook] jim%

5.4.4 timeline

This prints out the timeline of the project in various ways. The command would be useful if you
were building a GUI front end for Fossil and wanted to display the timeline. You could issue this
command and get the result back and display it in your UI. There are a number of options in the
command to control the listing.

PAN-20100424

Revision: 1.80

15 November 2016 Page 93 of 107

Fossil Version Control

A Users Guide

547 ~> fossil help timeline
Usage: fossil timeline ?WHEN? ?CHECKIN|DATETIME? ?OPTIONS?

Print a summary of activity going backwards in date and time
specified or from the current date and time if no arguments
are given. The WHEN argument can be any unique abbreviation
of one of these keywords:

 before
 after
 descendants | children
 ancestors | parents

The CHECKIN can be any unique prefix of 4 characters or more. You
can also say "current" for the current version.

DATETIME may be "now" or "YYYY-MM-DDTHH:MM:SS.SSS". If in
year-month-day form, it may be truncated, the "T" may be replaced by
a space, and it may also name a timezone offset from UTC as "-HH:MM"
(westward) or "+HH:MM" (eastward). Either no timezone suffix or "Z"
means UTC.

Options:
 -n|--limit N Output the first N entries (default 20 lines).
 N=0 means no limit.
 -p|--path PATH Output items affecting PATH only.
 PATH can be a file or a sub directory.
 --offset P skip P changes
 -t|--type TYPE Output items from the given types only, such as:
 ci = file commits only
 e = technical notes only
 t = tickets only
 w = wiki commits only
 -v|--verbose Output the list of files changed by each commit
 and the type of each change (edited, deleted,
 etc.) after the check-in comment.
 -W|--width <num> Width of lines (default is to auto-detect). Must be
 >20 or 0 (= no limit, resulting in a single line per
 entry).
 -R REPO_FILE Specifies the repository db to use. Default is
 the current checkout's repository.

Figure 100: timeline detail

5.4.5 wiki

This command allows you to have command line control of the wiki. Again this is useful if you
were writing a shell to control Fossil or wanted to add a number of computer generated pages to the
Wiki.

PAN-20100424

Revision: 1.80

15 November 2016 Page 94 of 107

Fossil Version Control

A Users Guide

548 ~> fossil help wiki
Usage: fossil wiki (export|create|commit|list) WikiName

Run various subcommands to work with wiki entries or tech notes.

 fossil wiki export PAGENAME ?FILE?
 fossil wiki export ?FILE? -t|--technote DATETIME|TECHNOTE-ID

 Sends the latest version of either a wiki page or of a tech note
 to the given file or standard output.
 If PAGENAME is provided, the wiki page will be output. For
 a tech note either DATETIME or TECHNOTE-ID must be specified. If
 DATETIME is used, the most recently modified tech note with that
 DATETIME will be sent.

 fossil wiki (create|commit) PAGENAME ?FILE? ?OPTIONS?

 Create a new or commit changes to an existing wiki page or
 technote from FILE or from standard input. PAGENAME is the
 name of the wiki entry or the timeline comment of the
 technote.

 Options:
 -M|--mimetype TEXT-FORMAT The mime type of the update.
 Defaults to the type used by
 the previous version of the
 page, or text/x-fossil-wiki.
 Valid values are: text/x-fossil-wiki,
 text/markdown and text/plain. fossil,
 markdown or plain can be specified as
 synonyms of these values.
 -t|--technote DATETIME Specifies the timestamp of
 the technote to be created or
 updated. When updating a tech note
 the most recently modified tech note
 with the specified timestamp will be
 updated.
 -t|--technote TECHNOTE-ID Specifies the technote to be
 updated by its technote id.
 --technote-tags TAGS The set of tags for a technote.
 --technote-bgcolor COLOR The color used for the technote
 on the timeline.

 fossil wiki list ?OPTIONS?
 fossil wiki ls ?OPTIONS?

 Lists all wiki entries, one per line, ordered
 case-insensitively by name.

 Options:
 -t|--technote Technotes will be listed instead of
 pages. The technotes will be in order
 of timestamp with the most recent
 first.
 -s|--show-technote-ids The id of the tech note will be listed
 along side the timestamp. The tech note
 id will be the first word on each line.
 This option only applies if the
 --technote option is also specified.

DATETIME may be "now" or "YYYY-MM-DDTHH:MM:SS.SSS". If in
year-month-day form, it may be truncated, the "T" may be replaced by
a space, and it may also name a timezone offset from UTC as "-HH:MM"
(westward) or "+HH:MM" (eastward). Either no timezone suffix or "Z"
means UTC.

Figure 101: wiki detail

PAN-20100424

Revision: 1.80

15 November 2016 Page 95 of 107

Fossil Version Control

A Users Guide

5.5 Advanced

These are commands that you will rarely have to use. These are functions that are needed to do very
complicated things with Fossil. If you have to use these you are probably way beyond the audience
for this book.

5.5.1 scrub

This is used to removed sensitive information like passwords from a repository. This allows you to
then send the whole repository to someone else for their use.

551 ~> fossil help scrub
Usage: fossil scrub ?OPTIONS? ?REPOSITORY?

The command removes sensitive information (such as passwords) from a
repository so that the repository can be sent to an untrusted reader.

By default, only passwords are removed. However, if the --verily option
is added, then private branches, concealed email addresses, IP
addresses of correspondents, and similar privacy-sensitive fields
are also purged. If the --private option is used, then only private
branches are removed and all other information is left intact.

This command permanently deletes the scrubbed information. THE EFFECTS
OF THIS COMMAND ARE IRREVERSIBLE. USE WITH CAUTION!

The user is prompted to confirm the scrub unless the --force option
is used.

Options:
 --force do not prompt for confirmation
 --private only private branches are removed from the repository
 --verily scrub real thoroughly (see above)

Figure 102: scrub detail

5.5.2 search

This is used to search the timeline entries for a pattern. This can also be done in your browser on
the timeline page.

PAN-20100424

Revision: 1.80

15 November 2016 Page 96 of 107

Fossil Version Control

A Users Guide

552 ~> fossil help search
Usage: fossil search [-all|-a] [-limit|-n #] [-width|-W #] pattern...

Search for timeline entries matching all words provided on the
command line. Whole-word matches scope more highly than partial
matches.

Outputs, by default, some top-N fraction of the results. The -all
option can be used to output all matches, regardless of their search
score. The -limit option can be used to limit the number of entries
returned. The -width option can be used to set the output width used
when printing matches.

Options:

 -a|--all Output all matches, not just best matches.
 -n|--limit N Limit output to N matches.
 -W|--width WIDTH Set display width to WIDTH columns, 0 for
 unlimited. Defaults the terminal's width.

Figure 103: search detail

5.5.3 sha1sum

This can compute the sha1 value for a particular file. These sums are the labels that Fossil uses on
all objects and should be unique for any file.

553 ~> fossil help sha1sum
Usage: fossil sha1sum FILE...

Compute an SHA1 checksum of all files named on the command-line.
If a file is named "-" then take its content from standard input.

Figure 104: sha1sum detail

5.5.4 configuration

This command allows you to save or load a custom configuration of Fossil.

PAN-20100424

Revision: 1.80

15 November 2016 Page 97 of 107

Fossil Version Control

A Users Guide

555 ~> fossil help configuration
Usage: fossil configuration METHOD ... ?OPTIONS?

Where METHOD is one of: export import merge pull push reset. All methods
accept the -R or --repository option to specify a repository.

 fossil configuration export AREA FILENAME

 Write to FILENAME exported configuration information for AREA.
 AREA can be one of: all email project shun skin ticket user

 fossil configuration import FILENAME

 Read a configuration from FILENAME, overwriting the current
 configuration.

 fossil configuration merge FILENAME

 Read a configuration from FILENAME and merge its values into
 the current configuration. Existing values take priority over
 values read from FILENAME.

 fossil configuration pull AREA ?URL?

 Pull and install the configuration from a different server
 identified by URL. If no URL is specified, then the default
 server is used. Use the --legacy option for the older protocol
 (when talking to servers compiled prior to 2011-04-27.) Use
 the --overwrite flag to completely replace local settings with
 content received from URL.

 fossil configuration push AREA ?URL?

 Push the local configuration into the remote server identified
 by URL. Admin privilege is required on the remote server for
 this to work. When the same record exists both locally and on
 the remote end, the one that was most recently changed wins.
 Use the --legacy flag when talking to older servers.

 fossil configuration reset AREA

 Restore the configuration to the default. AREA as above.

 fossil configuration sync AREA ?URL?

 Synchronize configuration changes in the local repository with
 the remote repository at URL.

Options:
 -R|--repository FILE Extract info from repository FILE

See also: settings, unset

Figure 105: configuration detail

PAN-20100424

Revision: 1.80

15 November 2016 Page 98 of 107

Fossil Version Control

A Users Guide

5.5.5 descendants

This is used to find where the checked out files are in the time line.

556 ~> fossil help descendants
Usage: fossil descendants ?CHECKIN? ?OPTIONS?

Find all leaf descendants of the check-in specified or if the argument
is omitted, of the check-in currently checked out.

Options:
 -R|--repository FILE Extract info from repository FILE
 -W|--width <num> Width of lines (default is to auto-detect).
 Must be >20 or 0 (= no limit, resulting in a
 single line per entry).

See also: finfo, info, leaves

Figure 106: descendants detail

6 Chiselapp

Chiselapp (http://chiselapp.com)) is a website that is like github but hosts Fossil repos-
itories. This way you can have your repository on a internet accessible host. This works like the
Apache hosted repositories described in 3.2.1.2 on page 29 but Chiselapp supplies the server and
the host is on the internet not a local area network.

After you set up a FREE account you can then push your repository to them and zap you are on the
internet at:

https://chiselapp.com/user/<your account>/repository/<Project>

6.1 Create an account

Your first step is to create an account. The Chiselapp home page is:

PAN-20100424

Revision: 1.80

15 November 2016 Page 99 of 107

http://chiselapp.com)

Fossil Version Control

A Users Guide

Figure 107: Chiselapp Home page

Fill out the form with your information in my case I used my name and my Gmail account to set it
up and my account is jschimpf.

6.2 Repositories

You can create repositories on the site and then copy one of your local repositories there. You have
the choice of making public or private repositories. Public are visible to anyone visiting the site
and private are visible only to you. In addition you do the standard Fossil assignment of users and
privileges so once someone accesses the repository they only can do what you allow.(Figure: 8 on
page 13)

The rest of this section will show how I am putting the repository NULLMODEM http://
chiselapp.com/user/jschimpf/repository/NULMODEM/index on to ChiselApp.

6.2.1 Create Repository

The first step is to pick the option Create New Repository on your login page. This will give you
the following screen:

PAN-20100424

Revision: 1.80

15 November 2016 Page 100 of 107

http://chiselapp.com/user/jschimpf/repository/NULMODEM/index
http://chiselapp.com/user/jschimpf/repository/NULMODEM/index

Fossil Version Control

A Users Guide

Figure 108: Create New Repository

So I fill in the name as NULLMODEM and I put in my repository password but what is Project
Code ? Here you have to run Fossil to extract this information from your repository as follows:

500 FOSSIL> fossil info -R NULMODEM.fossil
project-name: NULMODEM
project-code: 212090674315b38f03866ada5aa378953fa9f432
checkins: 6

Figure 109: Getting the project code

The form is now filled in and we can create the repository

Figure 110: Filled in form

and you get this:

PAN-20100424

Revision: 1.80

15 November 2016 Page 101 of 107

Fossil Version Control

A Users Guide

Figure 111: Success

6.2.2 Moving data

The next step is moving the repository on my disk to Chiselapp. This is done via a push command
in Fossil. I am doing this command in the directory where NULMODEM.fossil lives so I don’t need
to type a path. Note the command is complete but I’m hiding my password when you do this type
you password in full where I have <passwd>.

501 FOSSIL> fossil push https://jschimpf:<passwd>@chiselapp.com/user/jschimpf/repository/NULMODEM -R NULMODEM.fossil --once
Round-trips: 12 Artifacts sent: 136 received: 0
Push finished with 1149855 bytes sent, 16690 bytes received
502 FOSSIL>

Figure 112: Sending the repository

6.2.3 Fixing Data

When you go to your new repository things are a bit messed up. You get:

Figure 113: Initial Repository view

Whoa where’s all my nice formatting and pointers to my documentation ? They are hidden and you
have to get them back:

Go to the timeline view:

PAN-20100424

Revision: 1.80

15 November 2016 Page 102 of 107

Fossil Version Control

A Users Guide

Figure 114: Time Line view

And see the top checkin that is the initial empty check-in this is an artifact of how Chiselapp creates
your repository and you have to SHUN it

Figure 115: Shun initial check-in

You will then be taken to another page where it will ask you if you really want to do this and pick
Shun again.

Not quite there yet, you have to log into the project (Remember your name and password from
Figure: 110 on page 101) log in with this information and go to the Admin->Configuration page.
Put in the same information you had on your local repository and ZAP your home page is back.

Figure 116: Set Configuration

PAN-20100424

Revision: 1.80

15 November 2016 Page 103 of 107

Fossil Version Control

A Users Guide

6.2.4 Final Fixes

The home page is now restored and we are ready to go.

Figure 117: Home page fixed

The only problem now is the System Manual link doesn’t work. The original was:

Figure 118: Orignal Link

The fix is to change the link to just /doc/tip/DOCS/NULMODEM.pdf

Figure 119: Fixed link

6.2.5 Synching

When you created the repository on ChiselApp you used this command: (note these lines are just
folded to fit the page when used they should all be one line.)

PAN-20100424

Revision: 1.80

15 November 2016 Page 104 of 107

Fossil Version Control

A Users Guide

fossil push https://jschimpf:<passwd>@chiselapp.com/user/jschimpf/repository/NULMODEM
-R NULMODEM.fossil --once

when you did that the repository was created but it did not sync with your local one. This is probably
not a good idea as you want the ChiselApp repository to stay up to date. If you leave off the –once
then it will sync locally. If it isn’t synching now and you want to reverse this at any time just type:

fossil push https://jschimpf:<passwd>@chiselapp.com/user/jschimpf/repository/NULMODEM
-R NULMODEM.fossil

i.e. the command without the –once and you are syncing again.

6.3 Final Result

Now you can go to https://chiselapp.com/user/jschimpf/repository/NULMODEM
and view the repository and do what an anonymous user can do.

7 What’s next ?

This book so far has covered how to use the many features of Fossil and has, I hope, interested
you in using it. The question "what’s next" now comes up. First go to the Fossil website http:
//www.fossil-scm.org/. While there you can go to the Wiki link and then list all Wiki
pages. There are all sorts of topics covered there in depth. If that still doesn’t help, you can join the
Fossil mailing list (see Wiki links) and look at the archives or directly ask a question. I have found
the list to be very helpful and have had my questions asked very quickly.

On the mailing lists you will see long discussions of changes to be made to Fossil, some of these are
accepted very quickly and will appear within hours in the Fossil source code. Others engender long
discussions (in particular discussion of changes to the Wiki) and it is interesting to read the pros and
cons of suggested changes.

Fossil is an evolving program but if you get a version that has all the features you need you can stick
with that version as long as you like. Going to a new version though is simple and just requires a
rebuild of your current repositories. The developers have been very careful to preserve the basic
structure so it is easy and safe to switch versions.

Finally if you wish to contribute to the project there are many things to do (See the To Do List in
the Wiki).

PAN-20100424

Revision: 1.80

15 November 2016 Page 105 of 107

https://chiselapp.com/user/jschimpf/repository/NULMODEM
http://www.fossil-scm.org/
http://www.fossil-scm.org/

Index
A
add, 54
addremove, 55
all, 79

B
branch, 85

C
changes, 59
checkout, 63
ci, 71
clean, 83
clone, 74
close, 76
co, 63
commit, 71
configuration, 97

D
delete, 56
descendants, 99
diff, 64

E
extra, 59

F
finfo, 91
forget, 56

G
gdiff, 66

H
help, 53

M
merge, 85
mv, 58

N
new, 73

O
open, 76

P
pull, 81
push, 81

R
rebuild, 78
rename, 58
revert, 61
rm, 56

S
scrub, 96
search, 96
server, 69
settings, 88
sha1sum, 97
status, 58
sync, 82

T
tag, 86
timeline, 93

U
ui, 66
undo, 63
update, 62
user, 90

V
version, 77

W
wiki, 94

Z
zip, 90

106

Fossil Version Control

A Users Guide

References

[1] D. Crockford. The application/json media type for javascript object notation. Request for
Comments 4627, Network Working Group, July 2006.

[2] Mattias Ettrich. Lyx - the document processor.

[3] Dick Grune. Concurrent versions system, a method for independent cooperation. unpublished,
1986.

[4] D. Richard Hipp. Fossil home page.

[5] University of Texas. How we use sccs.

[6] Marc J Rochkind. The source control system. IEEE Transactions on Software Engineering,
SE-1(4):364, December 1975.

PAN-20100424

Revision: 1.80

15 November 2016 Page 107 of 107

	1 Source Control & Why you need it
	1.1 What is it
	1.2 Why do it ?
	1.2.1 How to get it

	1.3 Source control description
	1.3.1 Check out systems
	1.3.2 Merge systems
	1.3.3 Distributed systems
	1.3.4 Common Terms

	2 Single User Fossil Use
	2.1 Introduction
	2.2 Creating a repository
	2.2.1 Introduction
	2.2.2 Create Repository
	2.2.3 Connect Repository
	2.2.4 Add and Initial Commit
	2.2.5 Fossil start up summary

	2.3 Set Up User interface
	2.3.1 User interface summary

	2.4 Update Repository
	2.4.1 Update Summary

	2.5 Tickets
	2.5.1 Ticket Summary

	2.6 Wiki Use
	2.6.1 Wiki Summary

	3 Multiple Users
	3.1 Introduction
	3.2 Setup
	3.2.1 Server Setup
	3.2.1.1 Self hosted
	3.2.1.2 Server hosted
	3.2.1.3 CGI Script for hosted server

	3.2.2 The test (either self hosted or server hosted)

	3.3 User Accounts
	3.4 Multiple User Operation
	3.4.1 Cloning
	3.4.2 Keeping in sync
	3.4.3 Complications
	3.4.4 Fixing the Update file
	3.4.5 Fixing the Merge file

	4 Forks & Branches
	4.1 Introduction
	4.2 Forks, Branch & Merge
	4.2.1 Marilyn's Actions
	4.2.2 Jim's Actions
	4.2.3 Fixing the fork
	4.2.4 Commands used

	4.3 Merge without fork
	4.3.1 Check in attempt
	4.3.2 Update
	4.3.3 Commands used

	4.4 Branching
	4.4.1 Introduction
	4.4.2 Branch the repository
	4.4.3 Color Setup
	4.4.4 Check out the branches
	4.4.5 Correcting errors (in both)
	4.4.6 Commands used

	5 Fossil Commands
	5.1 Introduction
	5.2 Basic Commands
	5.2.1 help
	5.2.2 add
	5.2.3 addremove
	5.2.4 rm or delete or forget
	5.2.5 rename or mv
	5.2.6 status
	5.2.7 changes
	5.2.8 extra
	5.2.9 revert
	5.2.10 update
	5.2.11 checkout or co
	5.2.12 undo
	5.2.13 diff
	5.2.14 gdiff
	5.2.15 ui
	5.2.16 server
	5.2.17 commit or ci

	5.3 Maintenance commands
	5.3.1 new
	5.3.2 clone
	5.3.3 open
	5.3.4 close
	5.3.5 version
	5.3.6 rebuild
	5.3.7 all
	5.3.8 push
	5.3.9 pull
	5.3.10 sync
	5.3.11 clean
	5.3.12 branch
	5.3.13 merge
	5.3.14 tag
	5.3.15 settings

	5.4 Miscellaneous
	5.4.1 zip
	5.4.2 user
	5.4.3 finfo
	5.4.4 timeline
	5.4.5 wiki

	5.5 Advanced
	5.5.1 scrub
	5.5.2 search
	5.5.3 sha1sum
	5.5.4 configuration
	5.5.5 descendants

	6 Chiselapp
	6.1 Create an account
	6.2 Repositories
	6.2.1 Create Repository
	6.2.2 Moving data
	6.2.3 Fixing Data
	6.2.4 Final Fixes
	6.2.5 Synching

	6.3 Final Result

	7 What's next ?

