)

Fossil SCM

Fossil Version Control
A Users Guide

Jim Schimpf

2010 Pandora Products.
Document number: PAN-20100424

This work is licensed under the Creative Commons Attribution-Share Alike 3.0 United States Li-
cense. To view a copy of this license, visit http://creativecommons.org/licenses/
by-sa/3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.

Pandora Products

215 Uschak Road

Derry, PA 15627

United States of America

Phone: 724.539.1276

Fax: 724.539.1276

Web: http://www.fossil-scm.org/schimpf-book/index
Email: jim.schimpf@gmail.com

This version:
Revision Number: 2.0

Date: November 29, 2012

http://creativecommons.org/licenses/by-sa/3.0/us/
http://creativecommons.org/licenses/by-sa/3.0/us/

Contents

1. Source Control & Why you need it 1
1.1. Whatis Source Control? 1
1.2. Why version the files in your project? L. 2

1.2.1. Howtogetit ittt 2
1.3. Source control description 2
1.3.1. Checkoutsystems 2
1.3.2. Merge systems v v it e e e e e e e e e 3
1.3.3. Distributed systems e e 3
1.34. Common Terms o e 3

2. Single Users 5
2.1. Introduction L 5
2.2, Creating arepoSitory v v v v v i e e e e e e e e e e e e 5

22.1. Introduction L 5
222, Create Repository e 6
2.2.3. ConnectRepository e 6
2.2.4. Addand Initial Commit Lo 7
2.2.5. Fossil startup summaryo 7
2.3. SetUpUserinterface 8
2.3.1. Userinterface summary 11
2.4. Update Repository e 11
24.1. UpdateSummary i e e e 13
2.5, Ticketso e 14
2.5.1. Ticket Summary e 18
26. WikiUse 19
2.6.1. Wiki Summary e 23

3. Multiple Users 25
3.1. Introduction 25
32, Setup . ..o e 25

32,10 ServerSetup e 25
3.2.1.0.1. Selfhosted. 25

32.1.0.2. Serverhosted 26

3.2.1.0.3. CGI Script for hosted server 26

3.2.2. The test (either self hosted or serverhosted) 27

3.3, USer ACCOUNTS o v v v vt et e e e e e e e e e e e e 28

iii

Fossil Version Control

Multiple User Operation
34.1. Cloning
34.2. Keepinginsync.
34.3. Complications

Introduction oL
Forks, Branch & Merge
4.2.1. Marilyn’s Actions
422. Jim’sActions
423. Fixingthefork
424, Commandsused
Merge withoutfork
43.1. Checkinattempt
432. Update
433. Commandsused
Branching,
44.1. Introduction.
4.4.2. Branchtherepository
443. ColorSetup

44.6. Commandsused

Introduction
BasicCommands
52.1. help
522, add o
5.2.3. rmordel
524, renameormv
525, status
5.2.6. changes
527, extra.
5.2.8. revert
529. wupdate.
5.2.10. checkoutorco
5211.undo
5212, diff ..o
5213 0 gdiffo
5214, ui ...
5215 server
5.2.16. commitorci

3.4.
3.4.4. Fixing the Update file
4. Forks & Branches
4.1.
4.2.
4.3.
4.4,
4.4.4. Check out the branches
4.4.5. Correcting errors (in both)
5. Fossil Commands
5.1.
5.2.

3.4.5. Fixing the Mergefile

Updated for fossil version 1.25

Fossil Version Control Fossil SCM
5.3. Maintenance commands 62
531 MW e e e 62
532, clone e 62
5330 0PNo e e e e 63
534, close e 64
535, VErSION . ..o .. e e e e e e 64
5.3.6. rebuild 64
537, all ... e e e 65
538, push L 65
5339, pull ..o 65
5.3.10. SYNC .« . o o e e e e e 66
5301 . clean e 66
53.12. branch. 67
53013 MEIZe o v e e e e 67
5314, tag e e e e 68
53,150 settings e 69

54. Miscellaneous e e e 70
SAL. zZip. .. e 71
542, USET . . . v o e e e e e e e e e 71
543. finfo. e e e 71
544, timeline e e 72
545, wiki ..o e e e e 73

5.5. Advanced e 74
5.5.1. scrub ... 74
5.52. search 75
5.53. shalsum 75
554, 1Stats e e e 76
5.5.5. configuration 76
5.5.6. descendants e e 77

6. Fossil Customization - the TH Scripting language 79
6.1. Introductionto TH 79
6.1.1. THisaTcl-likelanguage 79

6.2. The “Hello, world” program 79
6.3. THstructure andsyntax 79
6.3.1. Datatypes e e e 79
6.32. Lists. e e 80
6.3.3. Commands e 81
6.3.4. Grouping & substitutiono Lo 81
6.3.4.1. Argument grouping 81

6.3.4.2. Valuesubstitutions 82

6.3.4.3. Backslash escape substitution. 82

6.3.4.4. Variable substitution 82

6.3.4.5. Command Substitution 83

Updated for fossil version 1.25 v

Fossil Version Control

6.3.4.6. Argument grouping revisited

6.3.5. Summary
6.35.1. Caveats.

6.4. THexpressions,
6.5. THwvariables.
6.5.1. Working with variables

6.5.1.1. Scalar variables and array variables

6.5.1.2. Variablescope

6.6. TH commands, scripts and program flow
6.6.1. Commandsrevisited
6.6.2. Scripts
6.6.3. Commandresultcodes
6.6.4. Flow controlcommands
6.6.5. Creating user defined commands
6.6.6. Execution of user defined commands
6.6.7. Specialcommands

6.7. working with strings L oL
6.8. working withlists

7. What’s next ?

A. Document Revision History

107

Updated for fossil version 1.25

vi

Disclaimer

Pandora Products has carefully checked the information in this document and believes it to be accu-
rate. However, Pandora Products assumes no responsibility for any inaccuracies that this document
may contain. In no event will Pandora Products be liable for direct, indirect, special, exemplary,
incidental, or consequential damages resulting from any defect or omission in this document, even
if advised of the possibility of such damages.

In the interest of product development, Pandora Products reserves the right to make improvements
to the information in this document and the products that it describes at any time, without notice or
obligation.

Additional Contributors
e Marilyn Noz - Editor
e Wolfgang Stumvoll - Fossil Merge use and Windows use

e Paul Ruizendaal - TH 1 Scripting Language manual

javalinBCD @ gmail.com - found bugs

arnel_legaspi@msn.com - found bugs

1. Source Control & Why you need it

1.1. What is Source Control?

A source control system is software that manages the files in a project. A project (like this book or
a software application) usually has a number of files. These files in turn are managed by organizing
them in directories and sub-directories. At any particular time this set of files in their present edited
state make up a working copy of the project at the latest version. If other people are working
the same project you would give them your current working copy to start with. As they find and
fix problems, their working copy will become different from the one that you have (it will be in a
different version). For you to be able to continue where they left off, you will need some mechanism
to update your working copy of the files to the latest version available in the team. As soon as you
have updated your files, this new version of the project goes through the same cycle again. Most
likely the current version will be identified with a code, this is why books have editions and software
has versions.

Software developers on large projects with multiple developers could see this cycle and realized
they needed a tool to control the changes. With multiple developers sometimes the same file would
be edited by two different people changing it in different ways and records of what got changed
would be lost. It was hard to bring out a new release of the software and be sure that all the work of
all team members to fix bugs and write enhancements were included.

A tool called Source Code Control System [6] was developed at Bell Labs in 1972 to track changes
in files. It would remember each of the changes made to a file and store comments about why this
was done. It also limited who could edit the file so conflicting edits would not be done. [5]

This was important but developers could see more was needed. They needed to be able to save the
state of all the files in a project and give it a name (i.e., Release 3.14). As software projects mature
you will have a released version of the software being used as well as bug reports written against it,
while the next release of the software is being developed adding new features. The source control
system would have to handle what are now called branches. One branch name for example "Version
1" is released but continues to have fixes added to create Version 1.1, 1.2, etc. At the same time you
also have another branch which named "Version 2" with new features added under construction.

In 1986 the open source Concurrent Version Control system CVS [3] was developed. This system
could label groups of files and allow multiple branches (i.e. versions) simultaneously. There have
been many other systems developed since them some open source and some proprietary.

Fossil which was originally released in 2006 [4] is a easy to install version control system that also
includes a trouble ticketing system (Figure 2.17 on page 16), a wiki (Figure 2.6 on page 19) and
self hosted web server (Figure 2.5 on page 8).

Fossil Version Control Fossil SCM

1.2. Why version the files in your project?

Why do you want to use a source control system? You won’t be able to create files, delete files or,
move files between directories at random. Making changes in your code becomes a check list of
steps that must be followed carefully.

With all those hassles why do it? One of the most horrible feelings as a developer is the “It worked
yesterday” syndrome. That is, you had code that worked just fine and now it doesn’t. If you work
on only one document, it is conceivable that you saved a copy under a different name (perhaps with
a date) that you could go back to. But if you did not, you doubtlessly feel helpless at your inability
to get back to working code. With a source control system and careful adherence to procedures
you can just go back in time and get yesterday’s code, or the code from one hour ago, or from last
month. After you have don this, starting from known good code, you can figure out what happened.

Having a source control system also gives you the freedom to experiment, “let’s try that radical new
technique”, and if it doesn’t work it’s easy to just go back to the previous state.

The rest of this book is a user manual for the Fossil version control system that does code manage-
ment and much much more. It runs on multiple OS’s and is free and open source software (FOSS).
It is simple to install as it has only one executable and the repositories it creates are a single file that
is easy to back up and are usually only 50% the size of the original source.

1.2.1. How to get it

If this has interested you then you can get a copy of the Fossil executable here http://www.
fossil-scm.org/download.html. There are Linux, Mac, and Windows executable links
on this page. The source code is also available if you want or need to compile yourself. This web
site, containing this PDF and the code behind the PDF, is self-hosted by Fossil (see Section 3 on
page 25).

1.3. Source control description

This next section is useful if you have not used source control systems before. I will define some of
the vocabulary and explain the basic ideas of source control.

1.3.1. Check out systems

When describing the grandaddy of source control systems, like SCCS I said it managed the changes
for a single file and also prevented multiple people from working on the same file at the same time.
This is representative of a whole class of source control systems. In these you have the idea of
“checking-out” a file so you can edit it. At the same time while other people using the system can
see who is working on the file they are prevented from touching it. They can get a read-only copy so
they can say build software but only the “owner” can edit it. When done editing the “owner” checks

Updated for fossil version 1.25 Page 2 of 107

http://www.fossil-scm.org/download.html
http://www.fossil-scm.org/download.html

d

Fossil Version Control Fossil SCM

it back in then anyone else could work on on it. At the same time the system has recorded who had
it and the changes made to it.

This system works well in small groups with real time communication. A common problem is that
a file is checked out by some one else and you have to make a change in it. In a small group setting,
just a shout over the cube wall will solve the problem.

1.3.2. Merge systems

In systems represented by CVS or Subversion the barrier is not getting a file to work on but putting
it back under version control. In these systems you pull the source code files to a working directory
in your area. Then you edit these files making necessary changes. When done you commit or check
them back into the repository. At this point they are back under version control and the system
knows the changes from the last version to this version.

This gets around the problem mentioned above when others are blocked from working on a file.
You now have the opposite problem in that more than one person can edit the same file and make
changes. This is handled by the check-in process. There only one person at a time may check in a
file. That being the case the system checks the file and if there are changes in repository file that are
NOT in the one to be checked in stops the check in process. The system will ask if the user wants to
merge these changes into his copy. Once that is done the new version of the file can be checked in.

This type of system is used on large projects like the Linux kernel or other systems where you have
a large number of geographically distributed contributors.

1.3.3. Distributed systems

The representatives of two major systems we have described thus far are centralized. That is there is
only one repository on a single server. When you get a copy of the files or check in files it all goes to
just one place. These work and can support many, many users. A distributed system is an extension
of this where it allows the repositories to be duplicated and has mechanisms to synchronize them.

With a single server users of the repository must be able to connect to it to get updates and for check
ins of new code. If you are not connected to the server you are stuck and cannot continue working.
Distributed systems allow you to have your own copy of the repository then continue working and
when back in communication synchronize with the server. This is very useful where people take
their work home and cannot access the company network. Each person can have a copy of the
repository and continue working and re-sync upon return to the office.

1.3.4. Common Terms

The following is a list of terms I will use when talking about version control or Fossil.

Repository This is the store when the version controlled files are kept. It will be managed by a
source control system

Updated for fossil version 1.25 Page 3 of 107

%

Fossil Version Control Fossil SCM

SCS Source control system, this is software that manages a group of files keeping track of changes
and allowing multiple users to modify them in a controlled fashion

Commit In Fossil to store the current set of new and changed files into the repository.
Trunk The main line of code descent in a Fossil repository.

Branch A user defined split in the files served by an SCS. This allow multiple work points on the
same repository. Older branches (versions) might have bug fixes applied and newer branches
(versions) can have new features added.

Fork In Fossil an involuntary split in the code path, occurs when a file in the repository has changes
not in a file to be committed.

Updated for fossil version 1.25 Page 4 of 107

2. Single Users

2.1. Introduction

If you have read this far and are at least persuaded to try, you will want to put one of your projects
under software control using Fossil. This chapter is set up to lead you through that task and show
you how to adapt your development to using this tool. The assumption is made in this section that
you will be the only person using the repository, you are the designer, developer, and maintainer
of this project. After you are comfortable using the tool, the next section will show how you use it
when you have multiple people working on a project.

2.2. Creating a repository

2.2.1. Introduction

In the spirit of “eating one’s own dog food” we will use this book as the project we are going to
manage with Fossil. The book is a directory of text files (we are writing it using Ly X [2]) and my
working area looks like this:

FOSSIL/

This directory holds all my Fossil repositories

FossilBook/
outline.txt - Book design
fossilbook.lyx — The book
Layout
fossil.png - The Fossil logo (image on title page)
Research

fossilbib.bib - Working bibliography
History
CVC-grune.pdf - Historical paper about CVS
RCS-A System for Version Control.webloc - RCS bookmark
SCCS-Slideshow.pdf - Historical paper about SCCS
VCSHistory -pysyncwebloc - History of version control

This took just an hour or so to start preliminary research and build the framework. Since that’s about
all I’'m going to do today I want to build a repository and put all this stuff under Fossil control.

4
1§é;

Fossil Version Control Fossil SCM

2.2.2. Create Repository

I have a directory called FOSSIL in which I keep all my repositories, Fossil doesn’t care but it helps
me to keep them all in one place so I can back them up. First I need to create a new repository for
the book. This is done using the command line after I move into the Fossil book directory.

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil new ../FOSSIL/FossilBook.fossil
project—-id: 2b0d35831cla5pb315d74c4£d8d532b100b822ad7

server—-id: 0149388e5a3109a867332dd8439%ac7b454£3£9dd

admin-user: jim (initial password is "ee3773")

Figure 2.1.: Create Repository

I create my repositories with the extension .fossil, this will be useful later with the server command
(See Figure 5.16 on page 61). When the create happened it assigned an initial password with an
admin user of “jim” (i.e., me).

2.2.3. Connect Repository

The repository is created but is empty and has no connection to the book directory. The next step is
to open the repository to the book directory with the open command.

[Pandora-2: jschimpf/Public/FossilBook] jim% fossil open ../FOSSIL/FossilBook.fossil
[Pandora-2:jschimpf/Public/FossilBook] jim% fossil status

repository: /Users/jschimpf/Public/FOSSIL/FossilBook.fossil

local-root: /Users/jschimpf/Public/FossilBook/

server—-code: 0149388e5a3109a867332dd8439%ac7b454£3£9dd

checkout: 279dfecd3£f0322£236a92a%9a8£3c96acf327d8cl 2010-04-25 12:40:39 UIC
tags: trunk

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil extra
Layout/fossil.png

Research/History/CVS-grune.pdf

Research/History/RCS--A System for Version Control.webloc
Research/History/SCCS-Slideshow.pdf
Research/History/VCSHistory - pysync -webloc
Research/fossilbib.bib

fossilbook.lyx

outline.txt

Figure 2.2.: Open Repository & Check

The open command seemingly did nothing but checking with the status command shows the repos-
itory, the directory it’s linked to and that we are hooked to the trunk of the store.

The extra command shows all the files in the directory that are NOT under control of Fossil. In this
case that’s all of them since we have not checked in anything.

Updated for fossil version 1.25 Page 6 of 107

d

Fossil Version Control Fossil SCM

2.2.4. Add and Initial Commit

I must now add all the relevant files into the repository with the add command. The Fossil add
is recursive so if I add the top level files it will automatically recurse into the subdirectories like
Layout and Research and get those files too. Before you do an add it pays to tidy up your directory
so you don’t accidentally add a bunch of transient files (like object files from a compile). It’s easy
to remove them later but a little tidying before hand can save you some work.

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil add .

ADDED Layout/fossil.png

ADDED Research/History/CVS—grune.pdf

ADDED Research/History/RCS--A System for Version Control.webloc
ADDED Research/History/SCCS-Slideshow.pdf

ADDED Research/History/VCSHistory - pysyncwebloc

ADDED Research/fossilbib.bib

fossil: cannot add _FOSSIL_

ADDED fossilbook.lyx

ADDED outline.txt

Figure 2.3.: Initial file add

I simply told fossil to do an add of the current directory (.) so it got all those files and all the files
in the subdirectory. Note the _FOSSIL_ that it didn’t add. This is the tag file that fossil keeps in a
directory so it knows what repository it belongs to. Fossil won’t add this file since it manages it, but
everything else is fair game.

One final thing before I can quit for the day, these files have been added or rather they will be added
to the repository when I commit it. That must be done and then we can relax and let Fossil manage
things.

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil commit -m "Initial Commit"
New_Version: 8fa070818679e1744374bc5302a621490276d739

Figure 2.4.: Initial Commit

I added a comment on the commit and it’s a good idea to always do this. When later we see the
timeline of the commits you will have notes to tell you what was done.

2.2.5. Fossil start up summary

o fossil new <name> Creates a new fossil repository

o fossil open <repository> While in a source directory connects this directory to the fossil
repository

o fossil add . Will add (recursively) all the files in the current directory and all subdirectories
to the repository

Updated for fossil version 1.25 Page 7 of 107

£

Fossil Version Control Fossil SCM

e fossil addremove Will (recursively) add any files that have been added in the current working
directory and delete any files that have been deleted in the current working directory.

e fossil commit -m ““Initial Commit” Will put all the currently added files into the repository.

2.3. Set Up User interface

One of the surprising features of Fossil is the webserver. This allows it to have a GUI type user
interface with no operating system specific code, the GUI is the web browser supplied by your OS.
In the previous steps I checked my project in to a Fossil repository, next I have to prep the web
interface for production use.

NOTE The Fossil web server uses port 8080 instead of the standard port 80 for all HTTP access.
When run it will automatically start your Web browser and open the repository home page.
Unfortunately my book work is done on a machine that already has Apache running on port
8080 so I will be using port 8081. I will always have to add an extra parameter on the Ul
command line to do this.

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil ui -port 8081

Figure 2.5.: Starting Webserver

NOTE: Newer versions of Fossil automatically find an open port and will give a message on the
command line telling you what port number is used. You can still use the -port option if you
want to control the port #.

This shows how it’s started, as you can see I have picked port 8081 since I am locked out of port
8080. When I do this my browser starts and I am presented with the following home page.

g

AV

ool Home

Unnamed Fossil Project Logged in as jim
Home Timeline Files Leaves Branches Tags Tickets Wiki Admin Logout

This is a stub home-page for the project. To fill in this page, first go to setup/config and establish a "Project Name".
Then create a wiki page with that name. The content of that wiki page will be displayed in place of this message.

Fossil version [c56af61e5e] 2010-04-22 15:48:25

Figure 2.6.: Initial webserver page

Following the advice on the page I go to setup/config. I am going to do the minimum setup that
you should do on all projects. As you get familiar with Fossil you will probably have many more
things that you will customize for your taste but what follows are the only things you HAVE to do.

Updated for fossil version 1.25 Page 8 of 107

¢
‘&i/

Fossil Version Control Fossil SCM

d
*\&:l‘ 3
QN

Unnamed Fossil Project WWW Configuration i usiin

Home Timeline Files Leaves Branches Tags Tickets Wiki Admin Logout

FossilBaak Project Name

Give your project a name so visitors know what this site is about. The project name will also be used as the RSS
feed title.

This is a user guide for Fossil. It will show a new user how to setup and use this
wonderfully simple source control system.

< Project Description

Describe your project. This will be used in page headers for search engines as well as a short RSS description.

Figure 2.7.: Initial Configuration

I have entered in a project name and put in a description, the project name will be the name of the
initial Wiki page (see 2.6 on page 19) and the description is useful for others to see what you are
doing here. Then I go to the bottom of the page and pick the Apply Changes button.

Next I pick the Admin tab (you can see it in the header bar) and the pick Users from that page. [am
presented with the users and will use this to set the password of the project.

g
‘\/&3“ 3
g

FossilBook User LISt Logged in as jim
Home Timeline Files Leaves Branches Tags Tickets Wiki Admin Logout
Add

Users: Notes:

UserID Capabilities Contact Info 1. The permission flags are as follows:

anonymous ghmncz Anon
developer dei Dev a Admin: Create and delete users
nobolzjﬂ j:r Nobody b Attach: Add attachments to wiki or tickets
—!read Bi kptw Reader ¢ Append-Tki: Append fo tickets
d Delete: Delete wiki and tickets

e Email:View sensitive data such as EMail
addresses

Figure 2.8.: User Configuration

As you can see Fossil automatically configures a number of users beyond just the creator. The
anonymous user you have already seen if you went to the Fossil web site to download the code.
This user can view and get code but cannot commit code. On the right side of the page are the
many options you can give to a user, it’s worth reading it all when you set up your repository. The

Updated for fossil version 1.25 Page 9 of 107

£

Fossil Version Control Fossil SCM

important one is me (jim) which has “s” or Super User Capabilities. This means I can do anything
with the repository.

I will now edit the user Jim to make sure it has the settings I want. In this case you MUST set the
password. Remember way back where Fossil set it during the create (Figure 2.1 on page 6), it’s a
very good idea to change this to something you can remember rather than the original random one.

<
“ /’

Fossibook EDIt User jim

Logged in as jim

Home Timeline Files Leaves Branches Tags Tickets Wiki Admin Logout

Cancel

Privileges And Capabilities:

User ID: 1
Login: jim The Setup user can make arbitrary configuration
Contact Info: [jim.schimpf@gmail.com changes. An Admin user can add other users and
I change user privileges and reset user passwords.
Capabilities: g:gtup Both automatically get all other privileges listed below.
Sacmn Use these two settings with discretion.
O+Delete
D:Emall 3 The "*" mark indicates the privileges of "nobody" that
B-Fasswor are available to all users regardless of whether or not
0 +Check-In they are logged in.
1+Check-Out
O +History The "" mark indicates the privileges of "anonymous”
O Reader that are inherited by all logged-in users.
[Developer
O+Clone The "+" mark indicates the privileges of "developer"
) -Read Wiki that are inherited by all users with the Developer
O New Wiki privilege.
*Append Wiki
[*Write Wiki The "+" mark indicates the privileges of "reader” that
[Attachments

Password:

*Read Ticket
*New Ticket

are inherited by all users with the Reader privilege.

The Delete privilege give the user the ability to erase

1+Append Ticket wiki, tickets, and attachments that have been added by
1 +Wirite Ticket anonymous users. This capability is intended for
0+ Ticket Report deletion of spam. The delete capability is only in effect

*Download Zip

sessnssess

Apply Changes

for 24 hours after the item is first posted. The Setup
user can delete anything at any time.

The History privilege allows a user to see most
hyperlinks. This is recommended ON for most logged-
in users but OFF for user "nobody" to avoid problems

Figure 2.9.: Super User Setup

I have put in my contact information (e-mail address) and while you cannot see it I have typed in a
password that I will remember. Then I applied the changes.

Now the repository is ready for further work, it’s rather bare bones at this point but the most impor-
tant things are set up.

Updated for fossil version 1.25 Page 10 of 107

d

Fossil Version Control Fossil SCM

2.3.1. User interface summary

e fossil ui run in the source directory will start a browser based user interface to fossil.
o fossil ui -port <IP port #> Can be used if port 8080 if already in use on your system.

e On the first run it is important to configure your project with a name and set the password for
yourself.

2.4. Update Repository

After writing the above section of the book I now have created a bunch of new files and changed
some of the existing files in the repository. Before quitting for the day I should add these new files
into the repository and commit the changes saving this milestone in the project.

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil extra
#fossilbook.lyx#

Images/Single_user/config_initial.epsf
Images/Single_user/initial_page.epsf
Images/Single_user/jim_setup.epsf
Images/Single_user/user_config.epsf

fossilbook.lyx~

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil status

repository: /Users/jschimpf/Public/FOSSIL/FossilBook.fossil

local-root: /Users/jschimpf/Public/FossilBook/

server-code: 0149388e5a3109a867332dd8439%ac7b454£3£9dd

checkout: 8fa070818679e1744374bc5302a621490276d739 2010-04-25 13:09:02 UTC
parent: 279dfecd3£0322£236a92a%9a8£3c96acf327d8cl 2010-04-25 12:40:39 UIC
tags: trunk

EDITED fossilbook.lyx

Figure 2.10.: Project Status

I run fossil extra to see these new files. The image files (those in Images/Single_user) I want to
add, the other two files, #fossilbook.lyx# and fossilbook.lyx~, I don’t want to add since they are
temporary artifacts of LyX. I also ran fossil status. This shows changes to files that are already in
the repository. There the only file changed is the book text itself, fossilbook.lyx.

All T have to do now is add in the directory Images which will add in the image files I want in the
repository. Then I commit the changes to the repository and we can move on to other tasks of the
day.

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil add Images
ADDED Images/Single_user/config_initial.epsf

ADDED Images/Single_user/initial_page.epsf

ADDED Images/Single_user/jim_setup.epsf

ADDED Images/Single_user/user_config.epsf

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil commit -m "Initial setup with pictures"

New_Version: a2dl2bf532a089ee53578e3el7c6e732c0442£49

Figure 2.11.: Update for new files

Updated for fossil version 1.25 Page 11 of 107

¢
‘&i/

Fossil Version Control Fossil SCM

After doing this commit I can bring up the Fossil ui (see Figure 2.5 on page 8) and view the project
Timeline by picking that tab on the Fossil header. We get this:

d
*\i(:i i
4 -

FossilBook Tlmellne Logged in as jim

Home Timeline Files Leaves Branches Tags Tickets Wiki Admin Logout

200 Events Checkins Only Tickets Only Wiki Only
4 most recent events

2010-04-26

11:32 497b938581] Leaf Update to catch changes in outline (user: jim, tags: trunk)
11:25 a2d12bf532] Initial setup with pictures (user: jim, tags: trunk)

2010-04-25

13:09 8fa0708186] Initial Commit (user: jim, tags: trunk)
12:40 279dfecd3f] initial empty check-in (user: jim, tags: trunk)

Fossil version [c56af61e5e] 2010-04-22 15:48:25

Figure 2.12.: Timeline

You can see all my check-ins thus far and you can see after the check-in from Figure 2.11 on the
preceding page I did another check-in because I missed some changes in the outline. The check-ins
are labeled with the first 10 digits of their hash value and these are active links which you can click
to view in detail what was changed in that version.

Updated for fossil version 1.25 Page 12 of 107

¢
‘&i/

Fossil Version Control Fossil SCM

)
%
Fofss"Book Ch e'Ck'in [497b93858f] Logged in as jim

SHA1 Hash: 497b93858{48b8885936906ce470aeb38fd7fbc2 (Record ID: 19)
Date: 2010-04-26 11:32:57
User: jim
Comment: Update to catch changes in outline
Received From: jim @ on 2010-04-26 11:32:57
Timelines: ancestors | descendants | both | trunk
Other Links: files | ZIP archive | manifest | edit

Tags And Properties

+ branch=trunk inherited from [279dfecd3f] branch timeline
« sym-trunk inherited from [279dfecd3f]

[show diffs]

Modified fossilbook.lyx from [62adda90bf0cfod2] to [cec3960e6877e71c]. [diff]
Modified outline.txt from [34a460a468c3500c] to [0870231e48504790]. [diff]

Fossil version [c56af61e5e] 2010-04-22 15:48:25

Figure 2.13.: Timeline Detail

I clicked on the very last check-in (the LEAF) and the display is shown above. There are many
things you can do at this point. From the list of changed files you can pick the diff link and it will
show in text form the changes made in that particular file. The “Other Links” section has a very
useful ZIP Archive. Clicking this will download a ZIP of this version to your browser. You will
find this useful if you want to get a particular version, in fact this is normally how you get a new
version of Fossil from the http://www.fossil-scm.org/. The edit link will be used later
to modify a leaf.

2.4.1. Update Summary

e fossil status and fossil extra will tell you the updated files and files not in the repository
before you commit.

o fossil commit - m “Commit comment” Commits a change (or changes). It is very important
to have a descriptive comment on your commit.

Updated for fossil version 1.25 Page 13 of 107

http://www.fossil-scm.org/

¢
‘&i/

Fossil Version Control Fossil SCM

2.5. Tickets

Besides managing your code Fossil has a trouble ticket system. This means you can create a ticket
for a problem or feature you are going to add to your system then track your progress. Also you can
tie the tickets to specific check-ins of your files. For software this is very useful for bug fixes and
feature additions. For example you can look for a bug in the ticket list then have it take you to the
change that fixed the problem. Then you know exactly what you did and not have to be confused by
other changes you might have made.

When you pick Tickets it will bring up this window. You can create a new ticket, look at the list, or
generate a new report. Keeping things simple I will just use the All Tickets list for now.

9
ﬁi‘\ﬁ/

rossibook 11CKet Main Menu isonmedibnadiis

o]
Home Timeline Files Leaves Branches Tags Tickets Wiki Admin
Logout

Enter a new ticket:
« New ticket

Choose a report format from the following list:
1. All Tickets [copy] [edif] [sal]

Create a new ticket display format:

o New report format

Fossil version [c56af61e5e] 2010-04-22 15:48:25

Figure 2.14.: Initial Ticket Window

Picking “New Ticket” I get a form that I fill out like so:

Updated for fossil version 1.25 Page 14 of 107

d
‘&i/
Fossil Version Control Fossil SCM

£
v
e New Ticket

FossilBook Logged in as jim
Home Timeline Files Leaves Branches Tags Tickets Wiki Admin Logout

Enter A New Ticket

Enter a one-line summary of the ticket:
Add in the Ticket operations to the Single User chapter

Type: What type of ticket is this?

Version: In what version or build number do you observe the problem?

How debilitating is the problem? How badly does the problem affect the

Spuerily: operation of the product?

ENail Not publicly visible. Used by developers to contact you with questions.

Jjim.schimpf@gmail.com

Enter a detailed description of the problem. For code defects, be sure to provide details on exactly how the
problem can be reproduced. Provide as much detail as possible.

This part of the chapter will explain how to use the ticket system. Close the ticket when we have added
the text and images.

After filling in the information above, press this button to create the new

ticket
Abandon and forget this ticket

Fossil version [c56af61e5e] 2010-04-22 15:48:25

Figure 2.15.: Ticket Form

Pretty simple actually. You can put as much or as little detail in here as you wish, but remember this
stuff might be really vital 6 weeks or 6 months from now so think of what you would want to know
then. When I press Submit I get this showing what I entered.

Updated for fossil version 1.25 Page 15 of 107

d
‘&i/
Fossil Version Control Fossil SCM

<
*\&(\l‘
O . .
FossilBook V|ew TICKEt Logged in as jim

Home Timeline Files Leaves Branches Tags Tickets Wiki Admin Logout

Aftach Check-ing Edit History MNew Ticket Timeline
Ticket UUID: 1665c78d9434439e84cb76b8b41148dac199e06f
Title: Add in the Ticket operations to the Single User chapter

Status: Open Type: Feature_Request
Severity: Important Priority:
Subsystem: Resolution:
Last Modified: 2010-04-27 10:59:56 Contact: jim.schimpf@gmail.com

Version Found In:
Description & Comments:

This part of the chapter will explain how to use the ticket system. Close the ticket when we have added the
text and images.

Fossil version [c56af61e5e] 2010-04-22 15:48:25

Figure 2.16.: Viewing a Ticket

Finally picking Tickets then “All Tickets” I can see my new ticket in the list marked as Open and in
a distinctive color.

rossibook All Tickets
Home Timeline Files Leaves Branches Tags Tickets Wiki Admin Logout

Logged in as jim

Edit MNew Ticket Raw SQL
Key: Active Review Fixed Tested Deferred Closed

mtime type status|subsystem title
1665c78d94(2010-04-27 Feature_Request|Open Add in the Ticket operations to the |edit
10:59:56 Single User chapter

Fossil version [c56af61e5e] 2010-04-22 15:48:25

Figure 2.17.: Ticket List with open ticket

I try, in handling tickets, to have links from ticket to the commit that addressed the problem and a
link from the commit back to the offending ticket. This way looking at the ticket I can get to the
changes made and from the timeline I can get the the ticket and its resolution. To do this I will make
sure and put the 10 digit hash label from the ticket into the check-in comment and put a link in the
resolved ticket to the check-in.

Updated for fossil version 1.25 Page 16 of 107

<&

Fossil Version Control Fossil SCM

Since I have now written the chapter and put in all these images of what to do I can now add in all
the new images to the repository and check this in as another completed operation. And I do that
like this:

Pandora-2:jschimpf/Public/FossilBook] jim% fossil add Images/Single_user
ADDED Images/Single_user/config_initial.epsf

ADDED Images/Single_user/initial_page.epsf

ADDED Images/Single_user/jim_setup.epsf

ADDED Images/Single_user/ticket_form.epsf

ADDED Images/Single_user/ticket_initial.epsf

ADDED Images/Single_user/ticket_list.epsf

ADDED Images/Single_user/ticket_submit.epsf

ADDED Images/Single_user/timeline.epsf

ADDED Images/Single_user/timeline_detail.epsf

ADDED Images/Single_user/user_config.epsf
[Pandora-2:jschimpf/Public/FossilBook] jim% fossil commit -m "[1665c78d94] Ticket Use"

Figure 2.18.: Ticket resolving check-in

First I added in all the new image files. I am lazy and just told it to add in all the files in the
Single_user directory. I have previously added some of those like config_initial.epsf but Fossil is
smart and knows this and won’t add that one twice. Even though it shows it ADDED, it really
didn’t.

The commit line is very important, as you can see I put 10 digit hash code for the ticket in brackets
in the comment. As we will see in the Wiki section this is a link to the Ticket, so when viewing the
comment in the Timeline or elsewhere you can click the bracketed item and you would go to the
ticket.

Now that I have the items checked in I have to close the ticket. I do that by clicking on its link in the
ticket list, that will go the the View Ticket window as shown in Figure 2.17 on the preceding page.
From there I pick edit and fill it in as shown:

Updated for fossil version 1.25 Page 17 of 107

d
‘&i/
Fossil Version Control Fossil SCM

&
- Edit Ticket

FossilBook Logged in as jim
Home Timeline Files Leaves Branches Tags Tickets Wiki Admin Logout

Title: add in the Ticket operations to the Single User chapter

Status:
Type:

Severity:
Priority:

Fixed H

Resolution:

s

Subsystem:

Contact: jim.schimpf@amail.com

Version Found In: | [39bc728527)

Append Remark from jim
Added the new images and finished the section. See [39bc728527)

(Submit Changes) (Cancel)

Fossil version [c56af61e5e] 2010-04-22 15:48:25

Figure 2.19.: Ticket Finish

I mark it as “Closed”. If you have code you can mark this as fixed, tested, or a number of other
choices. Another very important step, I brought up the Timeline and copied the link for the commit
I had just done in Figure 2.18 on the preceding page. By doing this my ticket is now cross linked
with the commit and the commit has a link back to the ticket.

2.5.1. Ticket Summary

e Tickets are a useful way of reminding you what needs done or bugs fixed

e When you commit a change that affects a ticket put the 10 digit hash label of the ticket into
the commit comment surrounded by brackets, e.g. [<10 digit hash>] so you can link to the
ticket

Updated for fossil version 1.25 Page 18 of 107

£

Fossil Version Control Fossil SCM

e When you close the ticket put in the hash label of the commit that fixed it.

2.6. Wiki Use

As we saw in Figure 2.5 on page 8 Fossil has a browser based user interface. In addition to the pages
that are built in you can add pages to web site via a wiki. This allows you to add code descriptions,
user manuals, or other documentation. Fossil keeps all that stuff in one place under version control.
A wiki is a web site where you can add pages and links from within your browser. You are given an
initial page then if you type [newpage] this text will turn into a link and if clicked will take you to a
new blank page. Remember in Figure 2.6 on page 8 that is the initial page for your project and from
there you can add new pages. These pages are automatically managed by the Fossil version control
system; you don’t have to add or commit.

Since I did the setup on repository (see Figure 2.7 on page 9) the home page has changed to this:

<
*\&(\i/

FossilBook FOSSIIBOO k Logged in as jim

Emply Page

Fossil version [c56af61e5e] 2010-04-22 15:48:25

Figure 2.20.: Blank Home Page

Not very helpful so the in rest of this chapter I will use the Wiki functions of Fossil to make this
more useful. If I pick the Wiki item from the menu bar I get:

Updated for fossil version 1.25 Page 19 of 107

¢
‘&i/

Fossil Version Control Fossil SCM

%
FossilBook WI kl Logged in as jim
Home Timeline Files Leaves Branches RETE] Tickets Wiki Admin Logout

FossilBook wiki home page.

L]

+ Recent changes to wiki pages.
» Formatting rules for wiki.

+ Use the Sandbox to experiment.
» Create a new wiki page.

o List of All Wiki Pages available on this server.
L]

Search wiki titles: (Submit)

Fossil version [c56af61e5e] 2010-04-22 15:48:25

Figure 2.21.: Wiki controls

These are the controls that let you control and modify the wiki. Most important for now is the
Formatting rules link. This link takes you to a page that describes what you can do to format a wiki
page. If you just type text on a page it will appear but be formatted by your browser. You can type
HTML commands to control this formating. It’s worth your time to carefully read this page and
note what you can and cannot do. The page just lists the valid HTML commands, and if you don’t
know what they mean I would suggest you find a page like this http://www.webmonkey .
com/2010/02/html_cheatsheet/ and keep it handy.

Besides the HTML markup the most powerful command for the Wiki is [page] where it links to a
new page. This is how you add pages and how you build your web site of documentation for the
repository.

d
*\1(;3/

rossibook WIiKiI Formatting Rules T ——

Home Timeline Files Leaves Branches Tags Tickets Wiki Admin Logout

Formatting Rule Summary

. Blank lines are paragraph breaks

. Bullets are "*" surrounded by two spaces at the beginning of the line.

. Enumeration items are "#" surrounded by two spaces at the beginning of a line.
. Indented pargraphs begin with a tab or two spaces.

. Hyperlinks are contained with square brackets: "[target]" or "[targetiname]".

. Most ordinary HTML works.

. <verbatim> and <nowiki.

=0 Wr =

We call the first five rules above "wiki" formatting rules. The last two rules are the HTML formatting rule.

Formatting Rule Details

Figure 2.22.: Wiki Formating

Updated for fossil version 1.25 Page 20 of 107

http://www.webmonkey.com/2010/02/html_cheatsheet/
http://www.webmonkey.com/2010/02/html_cheatsheet/

d
‘&i/
Fossil Version Control Fossil SCM

I now begin work. What I want to do is change the home page to be non-empty and also put a link
on the home page to the PDF of this book. In Figure 2.21 on the facing page I click on the first item,
the FossilBook home page. This takes me to the home page again but now I have an Edit option.
We also have a History option so I could look at older versions of the page.

&
ar
i‘éz -
Fossibook FOSSiIIBoOk Bl i

Home Timeline Files Leaves Branches Tags Tickets Wiki Admin Logout

Edit History

Empty Page

Fossil version [c56af61e5e] 2010-04-22 15:48:25

Figure 2.23.: Home page with edit

This shows my initial edit and a preview:

Updated for fossil version 1.25 Page 21 of 107

£

Fossil Version Control Fossil SCM

d
*\,“%‘ :
roimoo Edit: FossilBook ———

Home Timeline Files Leaves Branches Tags Tickets Wiki Admin
Logout

Preview:

Fossil User Manual

This repository holds the text and images of a Fossil user manual. This will show a new user
how to use the many features of this innovative and simple source control tool. The manual will
be illustrated with screen captures showing both command line and browser Ul control of the
Fossil repository. The example used for the entire book is the repository used to manage this
book.

e Link to book PDF
« Design & Tools Notes

<hl><center>Fossil User Manual</center></hl>

This repasitory holds the text and images of a Fossil user manual. This will show a new user how to use
the many features of this innovative and simple source contrel tool. The manual will be illustrated with
screen captures showing both command line and browser Ul contrel of the Fossil repository. The example
used for the entire book is the repository used to manage this book.

* [http:doc/tip/fossilbook.pdf | Link to book PDF]
* [tools | Design & Tools Notes]

[Preview Your Changes) (Appl\r These Changes) I:Cancel)

Fossil version [c56af61e5e] 2010-04-22 15:48:25

Figure 2.24.: Initial Home page

The bottom section is an edit window where I type things I want displayed and the top is a preview
of what the page will be. As you can see I typed some simple HTML to make a large and centered
title. The body of the text I just typed and as you see the browser fits the text to the screen. You can
have multiple paragraphs by just putting blank lines between your text. Next I wanted a bulleted
list and this is done by typing two spaces, a **’ then two more spaces. On each of these lines I have
a link to a new (not yet created page). If you look I put these in the form [<new page> | <title>].
This way I can have a long string that describes the link but have a nice short (no embedded spaces)
page name.

One mistake I usually make at this point is to click one of those new links which takes me to a new
blank page. OOPS, if I have not saved this page yet then I find I've lost my changes so far.

OK, I will save my changes and then go to the new pages. I am doing some complicated things here.
The first link is to the book PDF. This will be a file I create in the repository. The LyX program I’'m

Updated for fossil version 1.25 Page 22 of 107

%

Fossil Version Control Fossil SCM

using creates the PDF. I will do that, save it, and add it to the repository. But I don’t want to link to
a static file, that is I want the most current version of the PDF, the one I save each time I quit for the
day. To do this we have to put in a link that looks like this:

[http:doc/tip/FossilBook.pdf | Book (pdf)]

This is a special link the Fossil wiki understands, doc says this is documentation. tip says use the
most current version; you could put a version link here. And finally since I am going to put the
book PDF at the top level I only need the file name. If it was in a subdirectory I would have to say
doc/tip/subdir/filename.

The second link is just to a regular page and I can just edit that one just like I did this the main page.

2.6.1. Wiki Summary

Format your text using HTML commands like <h1>Title</h1> for page headings

Create and link pages using [<page> | <Link text>]

The page designation http:doc/tip/<document path relative to repository> will display any
document in the repository that your browser can handle (i.e. pdf, http etc)

Never click on a link till AFTER you have saved the page

Updated for fossil version 1.25 Page 23 of 107

3. Multiple Users

3.1. Introduction

In the previous chapter I went through using Fossil with just one user (me). In this chapter we
will get into using it with multiple users. Thanks to Fossil’s distributed design once the set up is
done using it is not much different than the single user case with Fossil managing automatically the
multiple user details.

3.2. Setup

In the previous chapter the Fossil repository was a file on our system and we did commits to it and
pulled copies of the source from it. Fossil is a distributed source control system; what this means
is that there is a master repository in a place that all users can access. Each user has their own
“cloned” copy of the repository and Fossil will automatically synchronize the users repository with
the master. From a each user’s perspective you have your local repository and work with it using
the same commands shown in Chapter ??. It’s just that now Fossil will keep your repository in sync
with the master.

3.2.1. Server Setup

I have the FossilBook.fossil repository and now have to put it in place so multiple users can access
it. There are two ways, the first is using fossil’s built in webserver to host the file and the second is
using the operating systems supported web server (if present) and a cgi type access.

3.2.1.0.1. Self hosted This is quite simply the easiest way to do it. The downside is that you
are responsible for keeping the machine available and the webserver up. That is, don’t turn the
machine off when you quit for the day or some other user is going to be upset. All I have to do is
this:

Pandora-2:/Users/jschimpf/Public] jim% cd FOSSIL/

Pandora-2:jschimpf/Public/FOSSIL] jim% fossil ui —port 8081 FossilBook.fossil &

1] 310

[
[
[
[Pandora-2:jschimpf/Public/FOSSIL] jim%

Figure 3.1.: Self-hosted Fossil repository

25

%

Fossil Version Control Fossil SCM

This is on UNIX system, the “&” at then end of the second line runs the fossil webserver in the
background. If I know this machine has an IP address of 192.168.1.200 then from any other machine
in the network I can say:

http://192.168.1.200:8081 to the browser and I can access the Fossil web server.

As you can see this is simple and works on any system that runs Fossil. As long as you carefully
make sure it’s always running and available for others this can be a very easy way to make the
master repository available.

The problems with this method are:

1. If you have multiple repositories you have to use the server not the ui command, have all
your repositories in the same directory, and have them all use the extension .fossil.

2. If the machine goes off line (i.e. for OS update) or other reason it might not automatically
restart the Fossil servers.

3. Backup of the repositories might be not be done.

This method does work, and if you only have one repository and a diligent owner of the master
machine, it will work and work well.

3.2.1.0.2. Server hosted If you have a server type machine available (i.e., a Linux or UNIX
box) that is running Apache or a Windows machine running IIS you can let it be the webserver
for your repository. This has a number of advantages: this machine will be up all the time, it will
probably be automatically backed up, and it can easily support multiple Fossil repositories.

I am not going into how to set up the webserver or how to enable (Common Gateway Interface)
CGI. See the following sites.

e ForIIS see here http://www.boutell.com/newfaqg/creating/iiscgihowto.
html and just ensure that your fossil.exe is in the path to be run by the cgi script.

e For Apache see here http://httpd.apache.org/docs/2.0/howto/cgi.html
and ensure you know the directory where the CGI scripts are stored.

If you are not in control of the webserver you will need the help of the server admin to enable CGI
and to copy your CGI scripts to correct location.

3.2.1.0.3. CGl Script for hosted server If we assume an Apache server and, in my case,
the cgi directory path is /Library/Webserver/CGI-Executables, then we have to write a script of the
form:

#!<Fossil executable location>
repository: <Fossil repository location>

Figure 3.2.: Fossil CGI script

Updated for fossil version 1.25 Page 26 of 107

http://www.boutell.com/newfaq/creating/iiscgihowto.html
http://www.boutell.com/newfaq/creating/iiscgihowto.html
http://httpd.apache.org/docs/2.0/howto/cgi.html

¢
‘&i/

Fossil Version Control Fossil SCM

and put it into the cgi script directory. I have put my Fossil executable into /usr/local/bin and I am
putting my Fossil shared repository into /Users/Shared/FOSSIL. My script then becomes:

#!/usr/local/bin/fossil
Put the book repository on the web
repository: /Users/Shared/FOSSIL/Fossilbook.fossil

Figure 3.3.: My Fossil CGI script

After making the script I then copy it to the CGI directory and allow anyone to execute it.

sudo cp Book.cgi /Library/Webserver/CGI-Executables/Book.cgi
sudo chmod a+x /Library/Webserver/CGI-Executables/Book.cgi

Figure 3.4.: Copying script into place

3.2.2. The test (either self hosted or server hosted)

If all is in place then I should be able to access the webserver and get to this:

9_0 6] FossilBook: FossilBook

FossilBook

FossilBook Not logged in
Home Timeline Leaves Branches Tags Tickets Wiki Login

Fossil User Manual

This repository holds the text and images of a Fossil user manual. This will show a new user how to use
the many features of this innovative and simple source control tool. The manual will be illustrated with
screen captures showing both command line and browser Ul control of the Fossil repository. The example
used for the entire book is the repository used to manage this book.

e Link to book PDF
* Design & Tools Notes

Fossil version [c56af61e5e] 2010-04-22 15:48:25

Figure 3.5.: Web access to Fossil CGI hosted site

Updated for fossil version 1.25 Page 27 of 107

Fossil Version Control Fossil SCM

3.3. User Accounts

Serving a repository, either self hosting or the more complicated CGI method gets you to the same
place as shown in Figure 3.5 on the previous page. Now I have to set up user accounts for the
other contributors to this book. Remember Fossil has automatically created an Anonymous user
(see Figure 2.8 on page 9) thus others can access the site in a limited way, that is they can download
the book but cannot commit changes. In this case I want to create a new account (Marilyn) that can
make changes and commit changes as she is my editor.

To accomplish all this first I have to login by going to the log in page and entering my ID (jim) and
my password. Now since I’m super-user I then go back to the User-Configuration page, Figure (2.8)
and add a new user:

Updated for fossil version 1.25 Page 28 of 107

£

Fossil Version Control Fossil SCM

’i
X\ W i
e« Add A New User

FossilBook Logged in as jim
Home Timeline Files Leaves Branches Tags Tickets Wiki Admin Logout
Cancel

AR (G WiaN Privileges And Capabilities:
Login: [Mariyn * The Setup user can make arbitrary configuration

Contact Info: changes. An Admin user can add other users and
e change user privileges and reset user passwords.

Capabliitios: i >etip Both automatically get all other privileges listed

DJAdmin below. Use these two settings with discretion.
O+Delete

0 +Email ¢ The "" mark indicates the privileges of "nobody"
O +Password that are available to all users regardless of
0J-Check-In whether or not they are logged in.

[+Check-Out

O +History e The "+" mark indicates the privileges of

O Reader "anonymous" that are inherited by all logged-in
Developer users.

+Clone

-Read Wiki « The "*" mark indicates the privileges of

DNew Wiki "developer" that are inherited by all users with the
1 *Append Wiki Developer privilege.

1+Write Wiki

™ Attachments « The "*" mark indicates the privileges of "reader"
1-Read Ticket that are inherited by all users with the Reader

O +New Ticket privilege.

1+Append Ticket o , .

] *Write Ticket e The Delg!e prmlege give the user the ability to
O +Ticket Report grase u:;l(;u Jlgkets, and attach mentgr Lh at haveb'l’ty
= i een adde anonymous users. This capabili

& -Downlgad Zip is intended fory deletign of spam. The delete
Password: [+eseveeens capability is only in effect for 24 hours after the
item is first posted. The Setup user can delete

anything at any time.

+ The History privilege allows a user to see most hyperlinks. This is recommended ON for most logged-in
users but OFF for user "nobody" to avoid problems with spiders trying to walk every historical version of
every baseline and file.

» The Zip privilege allows a user to see the "download as ZIP" hyperlink and permits access to the /zip
page. This allows users to download ZIP archives without granting other rights like Read or History. This
privilege is recommended for user nobody so that automatic package downloaders can obtain the
sources without going through the login procedure.

Figure 3.6.: New Editor user

Since she is going to be an editor, this will be similar to a developer if we were doing code, so I
picked the Developer privilege level. This way she can get the repository, check-in, check-out, and
write and update tickets. I also added the attachments since she might need that to put on an image
or other comment on actions she is doing. I also gave her a password so her access can be secured.

I could add other users at this point but don’t need any others for this project, but you can see how
easily this can be done. When you assign the user privileges just read carefully and don’t give them
any more than you think they need. If they have problems, you can easily modify their account in
the future.

Updated for fossil version 1.25 Page 29 of 107

z
Y

Fossil Version Control Fossil SCM

3.4. Multiple User Operation

With the server set up and the user established the next thing to do is clone the repository. That
is make copy from the webserver repository to my local machine. Once that is done this local
repository uses the same commands and is very much like single user use discussed in Section ??
on page ??. Fossil will synchronize your local repository with the one on the server.

3.4.1. Cloning

To clone a Fossil repository you have to know four things:
1. It’s web address, for our repository it is http://pandora.dyn-o-saur.com:8080/cgi-bin/Book.cgi
2. Your account name in my case it’s jim
3. Your password (which I'm keeping to myself thank you...)
4. The local name of the repository, in this case I'm calling it Fossilbook.fossil

You then go to where you want to keep the Repository (in my case the FOSSIL directory) and use
the clone command:

[Pandora-2: jschimpf/Public/FOSSIL] fossil clone http://jim:<passwd>@pandora.dyn-o-saur.com:8080/cgi-bin/Book.cgi FossilBook.fossil
NOTE: <passwd> - Stands in for real password

Bytes Cards Artifacts Deltas
Send: 49 1 0 0
Received: 120 2 0 0
Send: 625 25 0 0
Received: 4704 72 0 0
Send: 3104 72 0 0
Received: 5129052 131 10 5
Send: 2399 51 0 0
Received: 4381170 116 22 28

Total network traffic: 4117 bytes sent, 6913068 bytes received
Rebuilding repository meta-data...

65 (100%) ...

project-id: 2b0d35831cla5b315d74c4£d8d532b100b822ad?
server—-id: 3e67da6d6212494456c6901c5406a277d7e50430
admin-user: Jjim (password is "d07222")
[Pandora-2:jschimpf/Public/FOSSIL] Jjim%

Figure 3.7.: Clone command

At this point I can go through the steps outlined in Section ?? on page ?? to set my user password
and then open the Fossil Repository on a working directory.

Now that I've moved everything to the new cloned repository I do a check in a the end of the day
which looks like this:

Updated for fossil version 1.25 Page 30 of 107

z
Y

Fossil Version Control Fossil SCM

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil commit -m "Moved to clone repository"
Autosync: http://jim@pandora.dyn-o-saur.com:8080/cgi-bin/Book.cgi
Bytes Cards Artifacts Deltas

Send: 130 1 0 O

Received: 2990 65 0 0

Total network traffic: 334 bytes sent, 1876 bytes received
New_Version: 158492516c640d055bc0720684a05e797b88165a

Autosync: http://jim@pandora.dyn-o-saur.com:8080/cgi-bin/Book.cgi
Bytes Cards Artifacts Deltas

Send: 618798 74 1 2

Received: 3222 70 0 O

Send: 268138 73 1 0

Received: 3221 70 0 O

Send: 3977 72 0 1

Received: 3220 70 0 O

Total network traffic: 457995 bytes sent, 6011 bytes received
[Pandora-2:jschimpf/Public/FossilBook] jim%

Figure 3.8.: Cloned repository checkin

As you see the files were committed locally and then the local repository was automatically syn-
chronized with the repository on the server.

3.4.2. Keeping in sync

After doing all the setup described above I now have a distributed source control system. My co-
worker, Marilyn has also cloned the repository and begun work. She is editing the book correcting
my clumsy phrasing and fixing spelling mistakes. She is working independently and on the same
files I use. We must use Fossil to prevent us from both modifying FossilBook.lyx but in differ-
ent ways. Remember Fossil has no file locking, there is nothing to prevent her from editing and
changing the file while I work on it.

This is where we both must follow procedures to prevent this sort of problem. Even though she
edits files I cannot see the changes till they are committed. Two different versions of the same file
won’t be a problem till I try to commit with my version and her version is in the current leaf.

There are two problems:
1. Before I do any work I must be sure I have the current versions of all the files.

2. When I commit I must make sure what I am committing has only my changes and is not
stepping on changes she has done.

The first is pretty obvious, make sure you have the latest before you do anything. We do that with
the update command. In Figure 3.8 I had done my latest check in. Before starting any more work I
should ensure that Marilyn hasn’t checked in something else. I could check the timeline but instead
I’'ll do an update to my repository and source files. When I do the update I specify it should be
updated from the trunk. This ensures I get it from the latest and greatest not some branch.

Ah ha ! Marilyn has been at work and updated the book source and pdf. If I check the timeline from
the webserver I see she has even documented it:

Updated for fossil version 1.25 Page 31 of 107

£

Fossil Version Control Fossil SCM

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil update trunk
Autosync: http://jim@pandora.dyn-o-saur.com:8080/cgi-bin/Book.cgi
Bytes Cards Artifacts Deltas

Send: 130 1 0 O

Received: 3588 78 0 0

Send: 365 6 0 0

Received: 136461 83 2 3

Total network traffic: 796 bytes sent, 131582 bytes received
UPDATE fossilbook.lyx

UPDATE fossilbook.pdf

[Pandora-2:jschimpf/Public/FossilBook] jim%

Figure 3.9.: Update action

» . .
sk Timeline N

Home Timeline Files Leaves Branches Tags Tickets Wiki Admin
Logout

Fossil

200 Events Checkins Only Older Tickets Only Wiki Only

20 most recent events

11:36 Closed ticket ebi48b842a: Edilorial corrections (spelling efc) plus 4 other changes
(user: Marilyn)

11:34 d44769cc23] Leaf ebi40b842a Editorial corrections on text thus far (user: marilyn,
fags: trunk)

1048 New ticket ebi40b842a Edilorial correclions (spelling efc). (user: Marilyn)

11:35 aad7dd10f3] Commit last change and updated PDF (user: jim, tags: trunk)
158492516c] Moved to clone repository (user: jim, tags: trunk)
1a403c87fc] Update before moving to server (user: jim, tags: trunk)

11:03 fe5578c96f] Correct site URL (user: jim, tags: trunk)
10:52 fa5b9247bd] Working on chapter 1 (user: jim, tags: trunk)

11:16 Changes lo wiki page tools (user: jim)

11:15 51be6423a3] Update outline (user: jim, tags: frunk)

11:08 2234149037027a] Clean up Single user chapter and working initial chapter (user: jim,
fags: trunk)

11:08 7¢37c13190] End of day commit (user: jim, tags: trunk)

Figure 3.10.: Updated Timeline

Now I know I have the current state of the world and I can proceed to add in new sections.

3.4.3. Complications

In 3.4.2 on the previous page the second case is much harder. In this case I have diligently done
my fossil update and started working. In the mean time Marilyn has also done her update and also
started working. Now she is done and checks in her changes. I obviously don’t know this since I
am happily working on my changes. What happens next....

Updated for fossil version 1.25 Page 32 of 107

4
1§é;

Fossil Version Control Fossil SCM

[Pandora-2:jschimpf/Public/FossilBook] jim%fossil commit -m "Commit that might fork"
Autosync: http://jim@pandora.dyn-o-saur.com:8080/cgi-bin/Book.cgi

Bytes Cards Artifacts Deltas

Send: 130 1 0 O

Received: 4002 87 0 O

Send: 365 6 0 0

Received: 110470 92 2 3

Total network traffic: 797 bytes sent, 104567 bytes received

fossil: would fork. "update" first or use -f or --force.
[Pandora-2:jschimpf/Public/FossilBook] jim%

Figure 3.11.: Forking commit

Ah ha, that very thing has happened and fossil warned me that my copy of the file differs from
the master copy. If I did a —force then the repository would generate a fork and Marilyn’s future
commits would be to her fork and my commits would be to mine. That would not be what we want
since I want her to edit my copy of the book.

The next step would be to do as Fossil says and do an update. At this point you have to be careful
since blindly updating the changed files could overwrite the stuff I've just done. So we do a trial
update by using the -n and -v options to say“do a dry run” and show me the results.

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil update -n -v
UNCHANGED Images/Multiple_user/mul_new_user.epsf

UNCHANGED Images/Multiple_user/mul_timeline.epsf

UNCHANGED Images/Multiple_user/test_access.epsf

UNCHANGED Images/Single_user/config_initial.epsf

UNCHANGED Images/Single_user/initial_page.epsf

UNCHANGED Images/Single_user/jim_setup.epsf

UNCHANGED Images/Single_user/ticket_done.epsf

UNCHANGED Images/Single_user/ticket_form.epsf

UNCHANGED Images/Single_user/ticket_initial.epsf

UNCHANGED Images/Single_user/ticket_list.epsf

UNCHANGED Images/Single_user/ticket_submit.epsf

UNCHANGED Images/Single_user/timeline.epsf

UNCHANGED Images/Single_user/timeline_detail.epsf

UNCHANGED Images/Single_user/user_config.epsf

UNCHANGED Images/Single_user/wiki_blankhome.epsf

UNCHANGED Images/Single_user/wiki_formating.epsf

UNCHANGED Images/Single_user/wiki_home.epsf

UNCHANGED Images/Single_user/wiki_homeedit.epsf

UNCHANGED Images/Single_user/wiki_page.epsf

UNCHANGED Layout/fossil.png

UNCHANGED Research/History/CVS—-grune.pdf

UNCHANGED Research/History/RCS—--A System for Version Control.webloc
UNCHANGED Research/History/SCCS-Slideshow.pdf

UNCHANGED Research/History/VCSHistory - pysync — A Brief History of Version Control Systems - Project Hc
UNCHANGED Research/fossilbib.bib

MERGE fossilbook.lyx

UPDATE fossilbook.pdf

UNCHANGED outline.txt

[Pandora-2:jschimpf/Public/FossilBook] jim%

Figure 3.12.: Update dry run

Updated for fossil version 1.25 Page 33 of 107

%

Fossil Version Control Fossil SCM

That’s a little more than I wanted as you can see almost everything is UNCHANGED but it shows
that fossilbook.lyx needs a MERGE and fossilbook.pdf needs an UPDATE. This is what I should
expect, Marilyn has done edits to the fossilbook.lyx file and so have I so we have to merge the
changes. But she has also updated the fossilbook.pdf which I have not. Before we go on if you are
running on Linux or UNIX you can simplify this dry run by doing:

[Pandora-2:jschimpf/Public/FossilBook] jim%fossil update -n -v | grep —-v UNCHANGED
MERGE fossilbook.lyx
UPDATE fossilbook.pdf

Figure 3.13.: Update dry run, shorter

By using the pipe and grep I can eliminate all those extra UNCHANGED lines.

3.4.4. Fixing the Update file

First we fix the easy file, the fossilbook.pdf I can just update by itself so it matches the current
repository. It doesn’t need merged so just replace it. Before I do that I have to look at the repository
time line

Updated for fossil version 1.25 Page 34 of 107

¢
‘&i/

Fossil Version Control Fossil SCM

ﬁ:’&’i/ .
FossilBook Tlmellne Logged in as jim

Home Timeline Files Leaves Branches Tags Tickets Wiki
Logout

200 Events Checkins Only ~ Older Tickets Only Wiki Only

20 most recent events

2010-05-04
11:36 Closed ticket ebi40b842a: Ediforial corrections (spelling efc) plus 4 other changes
(user: Marilyn)
11:34 [[d44769cc23] Leaf ebi40b842a Editorial corrections on text thus far (user: marilyn,
tags: trunk)
10:48 New ticket ebi40B842a Editorial corrections (spelling efc). (user: Marilyn)
2010-05-03

11:35 aad7dd1013] Commit last change and updated PDF (user: jim, tags: trunk)
11:24 158492516¢] Moved to clone repository (user: jim, tags: trunk)
10:03 1a403c87fc] Update before moving to server (user: jim, tags: trunk)

2010-04-30
11:03 H 1e5578c96f] Correct site URL (user: jim, tags: trunk)

10:52 fa5b9247bd] Working on chapter 1 (user: jim, tags: trunk)
2010-04-29
11:16 | Changes to wiki page tools (user: jim)
11:15 [51be6423a3] Update outline (user: jim, tags: trunk)
11:08 2234148037027a] Clean up Single user chapter and working initial chapter (user: jim,
tags: trunk)
2010-04-28

11:08 N 7¢37¢13190] End of day commit (user: jim, tags: trunk)

4 R SARVEEE

Figure 3.14.: Current Timeline

I see that the current Leaf is [d44769cc23] and it is tagged as trunk. I want to update the fossil-
book.pdf from there. So I say:

[Pandora-2:jschimpf/Public/FossilBook] jim%$fossil update trunk fossilbook.pdf
Autosync: http://jim@pandora.dyn-o-saur.com:8080/cgi-bin/Book.cgi

Bytes Cards Artifacts Deltas
Send: 130 1 0 0
Received: 4002 87 0 0

Total network traffic: 334 bytes sent, 2412 bytes received
UPDATE fossilbook.pdf
[Pandora-2:jschimpf/Public/FossilBook] jim%

Figure 3.15.: Update fossilbook.pdf

and it’s done.

Updated for fossil version 1.25 Page 35 of 107

4
1§é;

Fossil Version Control Fossil SCM

3.4.5. Fixing the Merge file

We can use the tools built into Fossil. In this case noticing that commit will cause a fork Jim will
use the -force option to cause the fork and will handle the merge later.

E:\Profile\Ratte\data\organize\fossil-w32\fossil-book>fossil commit -m "adding some changes of jim"
fossil: would fork.0 "update" first or use —-f or —-force.
E:\Profile\Ratte\data\organize\fossil-w32\fossil-book>fossil commit -f -m "adding some other changes of
New_Version: df9f2ff6bl4ef65a9dd2162£f8bd20c78e1628165

Figure 3.16.: Forcing a commit under Windows

Now the timeline looks like:

History of fossilbook.lyx

g [Fis 7 197c95ee3d] part of check-in [df9f2fi6b1] adding some other changes of jim (user: Ratte branch: trunk) [diff]
annotate

1735 f8fc742ced] part of check-in [f10f68d7 17] adding some changes of im (user. Ratte branch: trunk) [diff] [annotate

1723 cf12774943] part of check-in [a91582b639] simulating marilyn's commit (user: Rafte branch: trunk) [diff} [annotate

17:21 4a9c960e42] part of check-in [d9e10e2602] undo wrong indentation from html copy&paste (user: Ratte branch:
trunk) [diff] [annotate

117 a0a6f39141] part of check-in [80b861536d] simulating merge base (user. Ratte branch: trunk) [annotate

Figure 3.17.: Windows Forked timeline

To remove this fork (i.e. get the changes Marilyn did into the trunk) we use the Fossil merge
command. We can use the merge because fossilbook.lyx is a text file and the merge markers are
designed to work with text files. If it was a binary file we might have to use an external file or copy
and paste between the two file versions using the handler program for the file.

E:\Profile\Ratte\data\organize\fossil-w32\fossil-book>fossil merge a91582b699
MERGE fossilbook.lyx
*x*x%x 2 merge conflicts in fossilbook.lyx

Figure 3.18.: Fossil Merge

Looking at the file (fossilbook.lyx) in a text editor (not LyX) we find:

Updated for fossil version 1.25 Page 36 of 107

<&

Fossil Version Control Fossil SCM

>>>>>>> BEGIN MERGE CONFLICT

Thanks to Fossil’s distributed design once the set up is done using it
with multiple users is not much different than the single user case.
Fossil will automatically manage the most multiple user details.

Thanks to Fossil’s distributed design once the set up is done using is

not much different than the single user case with Fossil managing automatically
the multiple user details.

<<<<<<< END MERGE CONFLICT

<Here edit in the changes>
E:\Profile\Ratte\data\organize\fossil-w32\fossil-book>fossil commit -m "merging marilyn’s fork back"
New_Version: acdd676d3abl57769496£6845ccc7652985¢c1d03

Figure 3.19.: Text differences

After the commit the timeline shows how the merge brought the fork back into the main trunk.
Marilyn will then have to update to this new trunk. (See Section ?? on page ?7?)

7 most recent events

:

18:03 acdd676d3a] Merge, Leaf merging marilyn's fork back (user Ratfte, tags: trunk)

17:37 df9f2fféb1] adding some other changes of jim (user: Ratte, tags: trunk)

135 f10f68d717] adding some changes of jim (user: Ratte, tags: trunk)

17:23 a91582b699] simulating marilyn's commit (user: Ratte, tags: trunk)

17:21 d9e10e2602] Fork undo wrong indentation from htmi copy&paste (user. Ratte, tags: trunk)

AT4T PR A EREE . T e S e B e e i e TR e 2

Figure 3.20.: Merged timeline

Updated for fossil version 1.25 Page 37 of 107

4. Forks & Branches

4.1. Introduction

This chapter will cover forking and branching in Fossil. Forking is where you unintentially create
two places to check into a repository. Branching is where you intentially do this because you want
to maintain two or more versions of the code in the same repository. We illustrated forking and it’s
solutions in Section 3.4.3 on page 32. If, instead of fixing (merging) the file then doing the commit,
we forced the commit, Fossil would fork the repository.

Forking is something to avoid because it creates two checkin paths for the code. Thus different
users will be on different paths and can check in contradictory changes. Branches on the other
hand are forks that you desire. These occur when you want to have two different versions of the
code base in development at the same time. This was described in 1.1 on page 1 where you have
a production verison of code under maintenance and a development version both served from the
same repository. In this case development changes should only be checked into the development
branch. Maintanence changes might have to be checked into both.

Instead of using the book repository for these examples we will use a JSON[1]parser program that
has a number of files and documentation. This will make it simpler to illustrate branching and
tagging.

There is a good discussion of these topics on the Fossil Web site http://www.fossil-scm.
org/index.html/doc/tip/www/branching.wiki.

4.2. Forks, Branch & Merge

In this case the JSON code has just been placed in Fossil and two developers check out copies to
work on. Jim wants to fix a number of compiler warnings that appear and Marilyn wants to fix the
documentation. In both cases they proceeed as shown in Chapter 3 on page 25. The JSON code has
been placed in a distributed location, each of them clones the repository, and opens a working copy
of the code.

4.2.1. Marilyn’s Actions
She looks through the documentation and finds a number of problems and fixes them (the documen-

tation uses LyX and PDF’s). When she is satisfied with what she has done, she checks the current
version of the documentation in:

39

http://www.fossil-scm.org/index.html/doc/tip/www/branching.wiki
http://www.fossil-scm.org/index.html/doc/tip/www/branching.wiki

£

Fossil Version Control Fossil SCM

‘\,\'\\:‘{ !
eme Timeline

Home Timeline Files Leaves Branches Tags Tickets
200 Events Checkins Only Tickets Only Wiki

7 most recent events

2010-06-08

10:42 [b72e96832¢e] Leaf Update documentation (user: Marilyn, tags: trunk)
10:12 New ticket d23bidbbbb Fix warnings in main & qgdj_util. (user: jim)

2010-06-07

10:53 Changes to wiki page JASONP (user: jim)

10:52 Changes to wiki page JASONP (user: jim)

10:52 Changes to wiki page JASONP (user: jim)

1045 [Bedbaf5ta8] Initial Checkin (user: jim, tags: trunk)

10:44 [b4bca2alc5] initial empty check-in (user: jim, tags: trunk)

Figure 4.1.: Marilyn’s work

4.2.2. Jim’s Actions

At the same time, Jim gets a working copy of version [6edbaf5fa8] of the code, puts in a ticket
[d23bf4bbbb] as shown in Figure 4.1. After fixing the warnings, Jim is done and goes to commit.
He does this AFTER Marilyn has done her commit.

551 jsonp> fossil commit -m " [d23bf4bbbb] Remove warnings"
Autosync: http://jim@pandora.dyn-o-saur.com:8080/cgi-bin/jsonp.cgi

Bytes Cards Artifacts Deltas
Send: 130 1 0 0
Received: 874 19 0 0
Total network traffic: 339 bytes sent, 771 bytes received
fossil: would fork. "update" first or use -f or —--force.

552 jsonp>

Figure 4.2.: Jim’s commit attempt

At this point Fossil recognizes that Marilyn has changed the repository (she updated the documen-
tation) but Jim does not have these changes because he checked out an earlier version of the code.
Jim says he must get his changes in so he does a FORCE to force fossil to accept the commit.

Updated for fossil version 1.25 Page 40 of 107

£

Fossil Version Control Fossil SCM

552 jsonp> fossil commit -m " [d23bf4bbbb] Remove warnings" -f
Autosync: http://jim@pandora.dyn-o-saur.com:8080/cgi-bin/jsonp.cgi

Bytes Cards Artifacts Deltas
Send: 130 1 0 0
Received: 874 19 0 0

Total network traffic: 338 bytes sent, 771 bytes received
New_Version: 1beab955418a942ab9953¢c4865109ff46cbbd691
Autosync: http://jim@pandora.dyn-o-saur.com:8080/cgi-bin/jsonp.cgi

Bytes Cards Artifacts Deltas
Send: 2646 25 0 4
Received: 1058 23 0 0

Total network traffic: 1498 bytes sent, 864 bytes received
*x%% warning: a fork has occurred xx*xx

Figure 4.3.: Forcing the commit

Looking at the timeline Jim sees this:

% . ,.-/] L]
sasone TIMeline

Home Timeline Files Leaves Branches Tags Tickets Wiki Admin Logout

200 Events Checkins Only Tickets Only Wiki Only

8 most recent events

2010-06-08
10:44] [1beab895541] Leaf d23bf4bbbb Remove warnings (user: jim, tags: trunk)
10:42 [b72e96832¢] Leaf Update documentation (user: Marilyn, tags: trunk)
1012 New ticket d23bf4bbbb Fix warnings in main & qdj_util. (user: jim)
2010-06-07
10:53 Changes to wiki page JASONP (user: jim)
10:52 Changes to wiki page JASONP (user: jim)
10:52 Changes to wiki page JASONP (user: jim)
10:45 [6edbaf5fa8] Fork Initial Checkin (user: jim, tags: trunk)
10:44 [b4bca2a0c5] initial empty check-in (user: jim, tags: trunk)

Figure 4.4.: Repository Fork

Not good, there are two Leaf’s and Marilyn would commit code to her fork and Jim would be
commiting code to his. So Jim must fix this by merging the code. Jim wants to merge versions
[b72e96832¢] of Marilyn and his [1beab85441].

Updated for fossil version 1.25 Page 41 of 107

<&

Fossil Version Control Fossil SCM

4.2.3. Fixing the fork

So Jim who’s checked out code is from Leaf [1beab85441] does a merge with Marilyn’s leaf
[b72e96832¢] like so:

556 jsonp> fossil merge b72e96832e
UPDATE docs/gdj.lyx

UPDATE docs/qdj.pdf

557 jsonp> fossil status

repository: /Users/jschimpf/Public/FOSSIL/jsonp.fossil

local-root: /Users/jschimpf/Public/jsonp/

server—-code: d3e7932b0b0£f5e704264ba30adeaeld978c08bco

checkout: 1beab955418a942ab9953c4865109ff46cbbd691 2010-06-08 10:44:56 UTC
parent: 6edbaf5fa8ed4d061c2e04e7£d481e7663b090bd3 2010-06-07 10:45:57 UTC
tags: trunk

UPDATED_BY_MERGE docs/qgdj.lyx
UPDATED_BY_MERGE docs/qdj.pdf
MERGED_WITH b72e96832e024f235696dcd6c5d0ddcc2cbhb38238

Figure 4.5.: Merge Operation

As shown the two documentation files are updated, there are no merge conflicts as Jim didn’t touch
these files and Marilyn didn’t touch the code files.

Next Jim does a commit to make this new merged set of files the new trunk. Rememeber doing the
merge shown in Figure 4.5 just updates your checked out code and does not change the repository
till you check it in.

558 jsonp> fossil commit -m "After merging in changes"
Autosync: http://jim@pandora.dyn-o-saur.com:8080/cgi-bin/jsonp.cgi

Bytes Cards Artifacts Deltas
Send: 130 1 0 0
Received: 1058 23 0 0

Total network traffic: 340 bytes sent, 864 bytes received
New_Version: 3d73c03edee33cdc2elbd8ad7de57b7a6b6d880a
Autosync: http://jim@pandora.dyn-o-saur.com:8080/cgi-bin/jsonp.cgi

Bytes Cards Artifacts Deltas
Send: 1737 26 0 1
Received: 1104 24 0 0
Total network traffic: 1101 bytes sent, 888 bytes received

559 jsonp>

Figure 4.6.: Commit after merge

When we look at the timeline we have a single leaf for future code commits.

Updated for fossil version 1.25 Page 42 of 107

£

Fossil Version Control Fossil SCM

"lr“;fi j
e .--'/ = =
sasone TIMeline

Home Timeline Files Leaves Branches Tags Tickets Wiki Admin Logou
200 Events Checkins Only Tickets Only Wiki Only

10 most recent events

2010-06-08
10:50 Tested ticket d23bf4bbbb: Fix warnings in main & qdj _util plus 4 other changes (user: jim)
10:48 [3d73c03ede] Merge, Leaf After merging in changes (user: jim, tags: trunk)
1044 [1beab95541] d23bf4bbbb Remove warnings (user: jim, tags: trunk)
10:42 [b72e96832¢e] Update documentation (user: Marilyn, tags: trunk)
1012 New ticket d23bf4bbbb Fix warnings in main & qdj_util. (user: jim)
2010-06-07
10:53 Changes to wiki page JASONP (user: jim)
10:52 Changes to wiki page JASONP (user: jim)
10:52 Changes to wiki page JASONP (user: jim)
10:45 [6edbaf5fa8] Fork Initial Checkin (user: jim, tags: trunk)
10:44 [b4bca2a0c5] initial empty check-in (user: jim, tags: trunk)

Figure 4.7.: After merge timeline

The only other thing remaining is that Marilyn does an Update before proceeding so her checked
out code matches the repository.

WhiteBook: jsonp marilyn$ fossil update
Autosync: http://Marilyn@pandora.dyn-o-saur.com:8080/cgi-bin/jsonp.cgi

Bytes Cards Artifacts Deltas
Send: 130 1 0 0
Received: 1150 25 0 0
Send: 412 7 0 0
Received: 3274 31 1 5

Total network traffic: 843 bytes sent, 2709 bytes received
UPDATE json-src/qdj_token.c

UPDATE json-src/gdj_util.c

UPDATE main.c

Figure 4.8.: Marilyn’s Update

4.2.4. Commands used

o fossil merge <fork> Used to merge a fork (specified by hash value) to current check out.

Updated for fossil version 1.25 Page 43 of 107

z
Y

Fossil Version Control Fossil SCM

o fossil update <version> Used to update current check out to specified version, if version not
present use default tag for check out (see fossil status)

4.3. Merge without fork

In this case I will show how to merge in code changes from multiple users without causing a fork.
In this case Marilyn has put in a BSD license text into all the code files while Jim is adding a help
function to the code. In this case both of them put in tickets saying what they are doing but acting
independently.

4.3.1. Check in attempt

Marilyn finished first and checks in her changes. Jim builds, tests and tries to check in his code and
gets:

502 jsonp> make

/usr/bin/gcc main.c -c -I. -Ijson-src -o obj/main.o
/usr/bin/gcc \

obj/main.o\

obj/adj.o\

obj/gdj_util.o\

obj/gdj_token.o\

-0 Jjsonp

503 jsonp> ./jsonp -v

JSON Test Program Ver: [Jun 9 2010] [10:15:00]

SYNTAX: jsonp —-i <json text file> [-V]

-1 <json text file> Show parse of JSON

-V Show help

506 jsonp> fossil commit -m "[fed383fala] Add help to cmd line"
Autosync: http://jim@pandora.dyn-o-saur.com:8080/cgi-bin/jsonp.cgi

Bytes Cards Artifacts Deltas
Send: 130 1 0 0
Received: 1656 36 0 0
Send: 647 12 0 0
Received: 14039 47 4 7
Total network traffic: 942 bytes sent, 4537 bytes received
fossil: would fork. "update" first or use -f or —--force.

Figure 4.9.: Jim’s check in attempt

4.3.2. Update

The next action Jim takes is to do the update but without doing changes, using the -n flag which
tells it to just show what’s going to happen without making any file changes.

Updated for fossil version 1.25 Page 44 of 107

£

Fossil Version Control Fossil SCM

507 jsonp> fossil update -n
UPDATE json-src/gdj.c
UPDATE json-src/qgdj.h
UPDATE json-src/gdj_token.c
UPDATE json-src/qgdj_token.h
UPDATE json-src/gdj_util.c
MERGE main.c

Figure 4.10.: Update dry run

This shows some files will be updated, i.e. be replaced by new text from the repository. The main.c
file will be merged with the version from the repository. That is text from the repository will be
mixed with the text from Jim’s modified file. Note that it says MERGE meaning the two sets of
text are a disjoint set. This means the merge can all be done by Fossil with no human intervention.

Jim can just do the update for real then commit the merged files to make a new leaf. So now we
have Marilyn’s and Jim changes combined in the lastest version.

‘{\\«i #
ome Timeline

Home Timeline Files Leaves Branches Tags Tickeis Wiki Admin Lo

200 Events Checkins Only Tickets Only Wiki Only

17 most recent events

2010-06-08
14:18 Tested ticket fed383fala: Add help to MAIN plus 4 other changes (user: jim)
14186 [462156b283] Leaf ted383fala Add help to cmd line (user: jim, tags: trunk)
14:08 New ticket fed383fala Add help to MAIN. (user: jim)
14:05 Closed ticket Z8421102e4: Add BSD license to code plus 2 other changes (user: Marilyn)
... 1 similar event omitted.
14:02 [fbb16491e2] 764211824 Add BSD license to code (user: Marilyn, tags: trunk)
1357 New ticket Ze421102e4 Add BSD license to code. (user: Marilyn)

Figure 4.11.: Merged repository

4.3.3. Commands used

e fossil update -n Does a dry run of an update to show what files will changed.

— UPDATE Implies file will be replaced by repository file
— MERGE Implies file will be mixed text from repository and check out

Updated for fossil version 1.25 Page 45 of 107

d

Fossil Version Control Fossil SCM

4.4. Branching

4.4.1. Introduction

We have discussed this before but branching is the intential splitting of the code in the repository
into multiple paths. This will usually be done with production code where we have maintenance
branch and a development branch. The maintenance branch is in use and would get bug fixes based
on experience. The development branch would get those changes if applicable plus be modified to
add features.

The JSON code parser has been tested and works so will be released to general use. Also we wish
to modify it to add support for UTF-8 characters so it matches the JSON standard. The current
version just works with ASCII 7 bit characters which is not standard. We wish to split the code
into a VER_1.0 branch which is the current code in use and VER_2.0 branch which will add UTF-8
character support.

4.4.2. Branch the repository

Before proceeding we will make sure we have the current trunk code in our check out.

[Pandora-2:jschimpf/Public/jsonp] Jjim% fossil status

repository: /Users/jschimpf/Public/FOSSIL/jsonp.fossil

local-root: /Users/jschimpf/Public/Jjsonp/

server—-code: 90c80fla2da7360dae230ccec65ff82fe2ebl60d

checkout: 462156b283b694af0b99c9b446b64d3£77436fbb 2010-06-09 14:16:42 UTC
parent: fbbl6491e2ff9f9%9ca3a98adffal6’7delb6903a44 2010-06-09 14:02:28 UTC
tags: trunk

Figure 4.12.: Checking code status

Seeing that matches the latest leaf in the time line we can proceed to branch the code.

Updated for fossil version 1.25 Page 46 of 107

£

Fossil Version Control Fossil SCM

[Pandora-2:jschimpf/Public/jsonp] jim% fossil branch new VER 1.0 trunk -bgcolor OxFFCOFF
sh: gpg: command not found

unable to sign manifest. continue (y/N)? y

New branch: 65e1£48633d691ab5ea738cd51ccbf9a581dfb3c7

Autosync: http://jim@pandora.dyn—-o-saur.com:8080/cgi-bin/jsonp.cgi

Bytes Cards Artifacts Deltas
Send: 2391 42 0 1
Received: 1840 40 0 0

Total network traffic: 1524 bytes sent, 1272 bytes received
[Pandora—-2:jschimpf/Public/jsonp] Jjim% fossil branch new VER 2.0 trunk -bgcolor 0xCOFOFF
sh: gpg: command not found

unable to sign manifest. continue (y/N)? y

New branch: al737916ec2df696a0f3a7e36edf9bad370e48a7

Autosync: http://jim@pandora.dyn—-o-saur.com:8080/cgi-bin/jsonp.cgi

Bytes Cards Artifacts Deltas
Send: 2437 43 0 1
Received: 1886 41 0 0

Total network traffic: 1550 bytes sent, 1271 bytes received
[Pandora-2:jschimpf/Public/jsonp] Jjim%

Figure 4.13.: Branch commands

What was just done. We used the Fossil branch command to create two branches VER_1.0 and
VER_2.0 and assigned each of them a color. We can see the timeline is now:

&l
‘\{\;éj)
% ,J/ - -
asone Timeline

Home Timeline Files Leaves Branches Tags Tickets Wiki Admin

200 Events Checkins Only ~ Tickets Only Wiki Only

19 most recent events

2010-06-13
10:14 al1737916ec] Leaf Create new branch named "VER_2.0" (user: jim, tags: VER_2.0)
10:13 [65e1f48633] Leaf Create new branch named "VER_1.0" (user: jim, tags: VER_1.0)
2010-06-09
14:18 Tested ticket fed383faia: Add help to MAIN plus 4 other changes (user: jim)
14:16 462156b283] Branch-Point, Leaf fed383fala Add help to cmd line (user: jim, tags: trunk)
14:08 New ticket ied383fala Add help fo MAIN. (user: jim)
14:05 Closed ticket Z8424102e4: Add BSD license to code plus 2 other changes (user: Marilyn)
... T similar event omitted.
14:02 fbb16491e2] Fe424402e4 Add BSD license to code (user: Marilyn, tags: trunk)
13:57 New ticket Z421482e4 Add BSD license to code. (user: Marilyn)

Figure 4.14.: Branch Timeline

Updated for fossil version 1.25 Page 47 of 107

£

Fossil Version Control Fossil SCM

4.4.3. Color Setup

As you see above the two branches have different colors in the timeline. This was due to the -
bgcolor option added when we created each branch. (See Figure 4.13). But we want this color to
appear on subsequent checkins of each of these branches. To make that happen we have to set the
options using the UI and picking a particular leaf on the timeline.

'
msone Edit Check-in [65e1f48633]

Home Timeline Files Leaves Branches Tags Tickets Wiki Ad

Make changes to attributes of check-in [65e1148633]:

User: [jim

Comment: [create new branch named "WER_1.0"

Check-in Time: [2p10-06-13 10:13:5

Background Color: # Propagate color to descendants
O (none) O #2dede O #f0ffic0 O #bde5d6 O #c0ffcO O #cOfi0
O #c0foff O #d0cOff ® #fficoff O #ffc0d0 O #fffocO O #c0c0c0

Tags: [Add the following new tag name to this check-in:
1 Cancel tag VER_1.0
[Cancel special tag bgcolor
1 Cancel special tag branch
[Cancel special tag date

[: Preview :I (Applv Changes :I (Cam:el :I

Figure 4.15.: Setting Timeline color

Under the Background Color section I have checked Propagate color to descendants so future
checkins will have the same color.

Updated for fossil version 1.25 Page 48 of 107

<&

Fossil Version Control Fossil SCM

4.4.4. Check out the branches

Now the the repository is branched we can check out the two sets of code into different directories.
We create jsonpl and jsonp2 and proceed to open the different branches into them.

[Pandora-2:jschimpf/Public/jsonpl] jim% fossil open ../FOSSIL/jsonp.fossil VER 1.0
docs/qgdj.lyx

docs/gdj.pdf

json-src/qgdj.c

json-src/qdj.h

json-src/qgdj_token.c

json-src/qdj_token.h

json-src/gdj_util.c

main.c

makefile

obj/test.txt

test.txt

project-name: JASONP

repository: /Users/jschimpf/Public/FOSSIL/jsonp.fossil
local-root: /Users/jschimpf/Public/jsonpl/
project-code: eb6084c8abll15cf2b28a129¢c7183731002¢c6143a
server—-code: 90c80fla2da7360dae230ccec65ff82fe2ebl60d

checkout: 65e1f48633d691abea738cd51ccbf9a581dfb3c7 2010-06-13 10:13:55 UTC
parent: 4621560b283b694af0b99¢c9b446b64d3f77436fbb 2010-06-09 14:16:42 UTC
tags: VER 1.0

Figure 4.16.: Check out VER_1.0

Checking out VER_2.0 in the same way

Updated for fossil version 1.25 Page 49 of 107

<&

Fossil Version Control Fossil SCM

[Pandora-2:jschimpf/Public/jsonp2] jim% fossil open ../FOSSIL/jsonp.fossil VER 2.0
docs/qgdj.lyx

docs/qgdj.pdf

json-src/qgdj.c

json-src/qdj.h

json-src/qdj_token.c

json-src/qdj_token.h

json-src/gdj_util.c

main.c

makefile

obj/test.txt

test.txt

project-name: JASONP

repository: /Users/jschimpf/Public/FOSSIL/jsonp.fossil
local-root: /Users/jschimpf/Public/jsonp2/
project-code: eb6084c8abll5cf2b28al129¢7183731002¢c6143a
server—-code: 90c80fla2da7360dae230ccec65ff82fe2ebl60d

checkout: al737916ec2df696a0f3a7e36edf9%0ad370ed48a7 2010-06-13 10:14:26 UTC
parent: 4621560b283b694af0b99¢c9b446b64d3£f77436fbb 2010-06-09 14:16:42 UTC
tags: VER 2.0

Figure 4.17.: VER_2.0 checkout

Notice on both of these the tags show which branch we are attached to.

4.4.5. Correcting errors (in both)

After doing this work I found that the main.c file had a warning about an unused variable. I wanted
to correct this in both branches. At this point all the files in both branches are the same so correcting
the file in either branch and copying it to the other is possible. I put in a ticket for the change and
edit main.c. I copy it to both checkouts for the both branches and then check both in.

Now the timeline looks like this:

Updated for fossil version 1.25 Page 50 of 107

<&

Fossil Version Control Fossil SCM

[Pandora—-2:jschimpf/Public/Jjsonpl] jim% fossil commit -m " [2795e6c74d] Fix unused variable"
Autosync: http://jim@pandora.dyn-o-saur.com:8080/cgi-bin/jsonp.cgi

Bytes Cards Artifacts Deltas
Send: 130 1 0 0
Received: 2116 46 0 0
Send: 365 6 0 0
Received: 3601 51 5 0

Total network traffic: 805 bytes sent, 3464 bytes received
New_Version: 3b902585d0e8849399286139d27676c5a349de7b
Autosync: http://jim@pandora.dyn—-o-saur.com:8080/cgi-bin/jsonp.cgi

Bytes Cards Artifacts Deltas
Send: 3034 50 0 2
Received: 2208 48 0 0

Total network traffic: 1848 bytes sent, 1444 bytes received
[Pandora—-2:jschimpf/Public/Jjsonpl] jim% ed ..
[Pandora-2:/Users/jschimpf/Public] jim% ed jsonp2
[Pandora-2:jschimpf/Public/jsonp2] jim% cp ../jsonpl/main.c
[Pandora-2:jschimpf/Public/Jjsonp2] jim% fossil status

repository: /Users/jschimpf/Public/FOSSIL/jsonp.fossil

local-root: /Users/jschimpf/Public/jsonp2/

server—-code: 90c80fla2da7360dae230ccec65ff82fe2ebl160d

checkout: al737916ec2df696a0f3a7e36edf9pad370e48a7 2010-06-13 10:14:26 UTC
parent: 462156b283b694af0b99c90446b64d3£f77436fbb 2010-06-09 14:16:42 UTC
tags: VER_2.0

EDITED main.c

[Pandora-2:jschimpf/Public/jsonp2] Jjim% fossil commit -m "[2795e6c74d] Fix unused variable"
Autosync: http://jim@pandora.dyn-o-saur.com:8080/cgi-bin/jsonp.cgi

Bytes Cards Artifacts Deltas
Send: 130 1 0 0
Received: 2392 52 0 0
Send: 318 5 0 0
Received: 3320 56 4 0

Total network traffic: 781 bytes sent, 3508 bytes received
New_Version: 762a31854d708080678598c8d4ce28465cbee8cS
Autosync: http://jim@pandora.dyn-o-saur.com:8080/cgi-bin/jsonp.cgi

Bytes Cards Artifacts Deltas
Send: 3253 55 0 2
Received: 2438 53 0 0

Total network traffic: 1972 bytes sent, 1573 bytes received
[Pandora—-2:jschimpf/Public/jsonp2] jim%

Figure 4.18.: Fixing both branches

Updated for fossil version 1.25 Page 51 of 107

¢
‘&i/

Fossil Version Control Fossil SCM

&
“:!v: ,
! ,-l/] -
sasone Timeline

Home Timeline Files Leaves Branches Tags Tickets Wiki

200 Events Checkins Only Older Tickets Only Wiki Only

20 most recent events

2010-06-13
10:35 Ticket 2795e6¢74d 1.0 Fix unused variable in main.c status still Tested with 2 other changes (u
10:34 0 [762a31854d] Leaf 2795e6¢74d Fix unused variable (user: jim, tags: VER_2.0)
10:32 Tested ticket 2795e6c74d: 1.0 Fix unused variable in main.c plus 4 other changes (user: jim)
10:30 0O | [3b902585d0] Leaf 2795e6¢74d Fix unused variable warning (user: jim, tags: VER_1.0)
10:28 New ticket 2795e6¢74d 1.0 Fix unused variable in main.c. (user: jim)
10:23 Closed ticket 6d45e32ba: Branch the repository plus 4 other changes (user: jim)
... 1 similar event omitted.
10:14 [[21737916ec] Create new branch named "VER_2.0" (user: jim, tags: VER_2.0)
10:13 1 1 [65e1f48633] Create new branch named "VER_1.0" (user: jim, tags: VER_1.0)
2010-06-09
14:18 Tested ticket fed383faia: Add help to MAIN plus 4 other changes (user: jim)
1416 3 [462156b283] Branch-Point, Leaf fed383faila Add help to cmd line (user: jim, tags: trunk)

Figure 4.19.: Correcting both branches

4.4.6. Commands used

o fossil branch Used to generate a branch of the repository. The command can optionally color
the branch in the display.

Updated for fossil version 1.25 Page 52 of 107

5. Fossil Commands

5.1. Introduction

This section will go through the various Fossil command line commands. This will be divided into
sections, the first will detail the must know commands. These are the ones you will be using all
the time and will probably have memorized in short order. The other commands will be divided
into Maintenance, Advanced, and Miscellaneous. These you will probably be checking as reference
before use.

The most important command is help. You can always type fossil help at the command line and it
will list out all the commands it has. Then typing fossil help <command> will print out the detailed
information on that command. You always have that as your reference. This section of the book will
try to supplement the built in help with some examples and further explanation of what a command
does. All of the commands will be placed in the index for easy searching

NOTE: Fossil is a moving target, commands might be added and others removed future versions.
Type fossil help on your version to get the latest list. The following applies to the fossil I used when
I wrote this and your version might be different.

5.2. Basic Commands

5.2.1. help

This command is used to dump the current command set and version of Fossil. It can also be used
in the form fossil help <command> to get further information on any command.

[Pandora-2:jschimpf/Public/FossilBook] jim%s fossil help
Usage: fossil help COMMAND
Common COMMANDs: (use "fossil help --all" for a complete list)

add changes finfo merge revert tag
addremove clean gdiff mv rm timeline
all clone help open settings ui
annotate commit import pull sqlite3 undo
bisect diff info push stash update
branch export init rebuild status version
cat extras 1s remote-url sync

This is fossil version 1.25 [d2e07756d9] 2013-02-16 00:04:35 UTC

Figure 5.1.: Help run

53

<&

Fossil Version Control Fossil SCM

Actually this will give you only a subset of the help commands, limited to the commands that are
used most often. If you want to see all commands available then issue the fossil help —all command.
Between versions you will see changes as to what is included in the help sub-set.

An example of using the help function to get further information about a particular command:

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil help add

Usage: fossil add FILE...

Make arrangements to add one or more files to the current checkout
at the next commit.

When adding files recursively, filenames that begin with "." are
excluded by default. To include such files, add the "--dotfiles"
option to the command-line.

Figure 5.2.: Help detail

5.2.2. add

The add command is used to add files into a repository. It is recursive and will pull in all files
in subdirectories of the current. Fossil will not overwrite any of the files already present in the
repository so it is safe to add all the files at any time. Only new files will be added.

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil help add

Usage: fossil add FILE...

Make arrangements to add one or more files to the current checkout
at the next commit.

When adding files recursively, filenames that begin with "." are
excluded by default. To include such files, add the "--dotfiles"
option to the command-line.

Figure 5.3.: add detail

Typing:
fossil add

will add all files in the current directory and subdirectories.

Note none of these files are put in the repository untill a commit is done.

5.2.3. rm or del

The rm command is used to remove files from the repository. The file is not deleted from the file
system but it will be dropped from the repository on the next commit. This file will still be available
in earlier versions of the repository but not in later ones.

Updated for fossil version 1.25 Page 54 of 107

4
1§é;

Fossil Version Control Fossil SCM

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil help rm
Usage: fossil rm FILE...

or: fossil del FILE...
Remove one or more files from the tree.
This command does not remove the files from disk. It just marks the
files as no longer being part of the project. 1In other words, future
changes to the named files will not be versioned.

Figure 5.4.: rm detail

You can delete groups of files by using wild-cards in their names. Thus if I had a group of files like
com_tr.c, com_rx.c and com_mgmt.c I could remove them all with:

fossil rm com_=*.c

By running a “fossil status” you can see what files will be deleted on the next commit.

5.2.4. rename or mv

This command is used to rename a file in the repository. This does not rename files on disk so is
usually used after you have renamed files on the disk then want to change this in the repository.

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil help rename
Usage: fossil mv|rename OLDNAME NEWNAME

or: fossil mv|rename OLDNAME... DIR
Move or rename one or more files within the tree
This command does not rename the files on disk. All this command does is
record the fact that filenames have changed so that appropriate notations
can be made at the next commit/checkin.

Figure 5.5.: rename detail

Just like add or rm you can use wild cards in the names and rename groups of files. Like them
“fossil status” will show you the current state.

5.2.5. status

The status command is used to show you the current state of your files relative to the repository. It
will show you files added, deleted, and changed. This is only the condition of files that are already
in the repository or under control of fossil. It also shows from where in the timeline you are checked
out and where your repository is kept.

Updated for fossil version 1.25 Page 55 of 107

4
1§é;

Fossil Version Control Fossil SCM

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil help changes
Usage: fossil changes

Report on the edit status of all files in the current checkout.
See also the "status" and "extra" commands.

Figure 5.7.: changes details

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil status

repository: /Users/jschimpf/Public/FOSSIL/FossilBook.fossil

local-root: /Users/jschimpf/Public/FossilBook/

server-code: 3e67da6d6212494456c6901c5406a277d7e50430

checkout: edd5b5fad277604£365ec09238422c0aa77a28faf 2010-05-08 14:44:21 UTC
parent: 3f019cbc730db0eb35£20941533a22635856b2b3 2010-05-08 11:15:19 UTC
tags: trunk

EDITED fossilbook.lyx

EDITED outline.txt

Figure 5.6.: status run

The listing above shows where my cloned copy of the repository is kept, where I am working, and
the tags show me that I am checked out of the trunk. Finally it shows the status of the files: I am
working on two of them.

5.2.6. changes

This lists the changed files like status but does not show the other information that status does.

5.2.7. extra

The extra command is used to find files you have added to your working directory but are not
yet under Fossil control. This is important because if you move your working directory or others
attempt to use the repository they won’t have these files.

Pandora-2:jschimpf/Public/FossilBook] jim% fossil help extra
Usage: fossil extras ?--dotfiles? ?--ignore GLOBPATTERN?

Print a list of all files in the source tree that are not part of
the current checkout. See also the "clean" command.

Files and subdirectories whose names begin with "." are normally
ignored but can be included by adding the --dotfiles option.

Figure 5.8.: extra details

The —dotfiles option shows you any files starting with “.” that are not under Fossil control. This
would be important if you need those files in your repository. The last option —ignore allows you
to ignore certain files you know don’t belong in the repository. In my case there is a file called
fossilbook.lyx~ that is a LyX backup file that I do not want, as it is temporary. So I can say

Updated for fossil version 1.25 Page 56 of 107

<&

Fossil Version Control Fossi

SCM

fossil extra —-—-ignore *.lyx~

and only get:

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil extra —--ignore x.lyx~
Images/Commands/helpl.epsf

instead of:

[Pandora-2: jschimpf/Public/FossilBook] Jjim% fossil extra
Images/Commands/helpl.epsf
fossilbook.lyx~

5.2.8. revert

The revert command is used to take a file back to the value in the repository. This is useful when
you make a error in editing or other mistake.

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil help revert
Usage: fossil revert ?-r REVISION? FILE ...

Revert to the current repository version of FILE, or to

the version associated with baseline REVISION if the -r flag
appears.

If a file is reverted accidently, it can be restored using

the "fossil undo" command.

Figure 5.9.: revert details

With no parameters it will revert the file to the current revision, see Figure 5.6 on the facing page.
The -r option allows you to pick any revision from the time line.

5.2.9. update

The update option will update a file or files to match the repository. With multiple users it should be
done before you start working on any files. This ensures you have the latest version of all the files.

Updated for fossil version 1.25 Page 57 of 107

4
1§é;

Fossil Version Control Fossil SCM

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil help update

Usage: fossil update ?VERSION? ?FILES...?

Change the version of the current checkout to VERSION. Any uncommitted
changes are retained and applied to the new checkout.

The VERSION argument can be a specific version or tag or branch name.
If the VERSION argument is omitted, then the leaf of the the subtree
that begins at the current version is used, if there is only a single
leaf. VERSION can also be "current" to select the leaf of the current
version or "latest" to select the most recent check-in.

If one or more FILES are listed after the VERSION then only the

named files are candidates to be updated. If FILES is omitted, all
files in the current checkout are subject to be updated.

The -n or --nochange option causes this command to do a "dry run". It
prints out what would have happened but does not actually make any
changes to the current checkout or the repository.

The -v or --verbose option prints status information about unchanged
files in addition to those file that actually do change.

Figure 5.10.: update details

Update has a number of options, first you can tie the update to a particular version, if not picked
then it just uses the latest. Second it can work on a single files or many files at once. That is you
could say

fossil update x.c

and it would update all C files.

Since this is a rather large set of changes it has a special “dry run” mode. If you add -n on the
command it will just print out what will be done but not do it. This is very useful to do this trial if
you are unsure what might happen. The -v command (which can be used with -n or alone) prints
out the action for each file even if it does nothing.

5.2.10. checkout or co

This command is similar to update.

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil help checkout
Usage: fossil checkout VERSION ?-f|--force? ?--keep?

Check out a version specified on the command-line. This command

will abort if there are edited files in the current checkout unless
the --force option appears on the command-line. The --keep option
leaves files on disk unchanged, except the manifest and manifest.uuid
files.

The --latest flag can be used in place of VERSION to checkout the
latest version in the repository.

See also the "update" command.

Figure 5.11.: checkout or co details

Updated for fossil version 1.25 Page 58 of 107

4
1§é;

Fossil Version Control Fossil SCM

5.2.11. undo

This is used to undo the last update, merge, or revert operation.

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil help undo

Usage: fossil undo ?FILENAME...?

Undo the most recent update or merge or revert operation. If FILENAME is
specified then restore the content of the named file(s) but otherwise
leave the update or merge or revert in effect.

A single level of undo/redo is supported. The undo/redo stack

is cleared by the commit and checkout commands.

Figure 5.12.: undo details

It acts on a single file or files if specified, otherwise if no file given, it undoes all of the last changes.

5.2.12. diff

The diff command is used to produce a text listing of the difference of a file in the working directory
and that same file in the repository. If you don’t specify a file it will show the differences between
all the changed files in the working directory vs the repository. If you use the —from and —to options
you can specify which versions to check and to compare between two different versions in the
repository. Not using the —to means compare with the working directory.

If you have configured an external diff program it will be used unless you use the -i option which
uses the diff built into Fossil.

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil help diff

Usage: fossil diff|gdiff ?2options? ?FILE?

Show the difference between the current version of FILE (as it

exists on disk) and that same file as it was checked out. Or

if the FILE argument is omitted, show the unsaved changed currently

in the working check-out.

If the "-—-from VERSION" or "-r VERSION" option is used it specifies

the source check-in for the diff operation. If not specified, the

source check-in is the base check-in for the current check-out.

If the "--to VERSION" option appears, it specifies the check-in from
which the second version of the file or files is taken. If there is

no "--to" option then the (possibly edited) files in the current check-out
are used.

The "-i" command-line option forces the use of the internal diff logic
rather than any external diff program that might be configured using

the "setting" command. If no external diff program is configured, then
the "-i" option is a no-op. The "-i" option converts "gdiff" into "diff".

Figure 5.13.: diff details

5.2.13. gdiff

This is the same as the diff command but uses (if configured) a graphical diff program you have on
your system. See the settings command for details on how to set the graphical diff program.

Updated for fossil version 1.25 Page 59 of 107

4
1§é;

Fossil Version Control Fossil SCM

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil help gdiff

Usage: fossil diff|gdiff ?2options? ?FILE?

Show the difference between the current version of FILE (as it

exists on disk) and that same file as it was checked out. Or

if the FILE argument is omitted, show the unsaved changed currently

in the working check-out.

If the "-—-from VERSION" or "-r VERSION" option is used it specifies

the source check-in for the diff operation. If not specified, the

source check—-in is the base check-in for the current check-out.

If the "--to VERSION" option appears, it specifies the check-in from
which the second version of the file or files is taken. If there is

no "--to" option then the (possibly edited) files in the current check-out
are used.

The "-i" command-line option forces the use of the internal diff logic
rather than any external diff program that might be configured using

the "setting" command. If no external diff program is configured, then
the "-i" option is a no-op. The "-i" option converts "gdiff" into "diff".

Figure 5.14.: gdiff details

5.2.14. ui

The ui command is used to start Fossil in a local webserver. The —port option is used to specify the
port it uses, by default it uses 8080. It should automatically start the system’s web browser and it
will come up with the repository web page. If run within a working directory it will bring up the
web page for that repository. If run outside the working directory you can specify the repository on
the command line.

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil help ui
Usage: fossil server ?-P|--port TCPPORT? ?REPOSITORY?

Or: fossil ui ?-P|--port TCPPORT? ?REPOSITORY?
Open a socket and begin listening and responding to HTTP requests on
TCP port 8080, or on any other TCP port defined by the -P or
—--port option. The optional argument is the name of the repository.
The repository argument may be omitted if the working directory is
within an open checkout.
The "ui" command automatically starts a web browser after initializing
the web server.
In the "server" command, the REPOSITORY can be a directory (aka folder)
that contains one or more repositories with names ending in ".fossil".
In that case, the first element of the URL is used to select among the
various repositories.

Figure 5.15.: ui details

5.2.15. server

This is a more powerful version of the ui command. This allows you to have multiple repositories
supported by a single running Fossil webserver. This way you start the server and instead of a
paricular repository you specify a directory where a number of repositories reside (all having the
extension .fossil) then you can open and use any of them.

Updated for fossil version 1.25 Page 60 of 107

<&

Fossil Version Control Fossil SCM

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil help server
Usage: fossil server ?-P|--port TCPPORT? ?REPOSITORY?

Or: fossil ui ?-P|--port TCPPORT? ?REPOSITORY?
Open a socket and begin listening and responding to HTTP requests on
TCP port 8080, or on any other TCP port defined by the -P or
—-port option. The optional argument is the name of the repository.
The repository argument may be omitted if the working directory is
within an open checkout.
The "ui" command automatically starts a web browser after initializing
the web server.
In the "server" command, the REPOSITORY can be a directory (aka folder)
that contains one or more repositories with names ending in ".fossil".
In that case, the first element of the URL is used to select among the
various repositories.

Figure 5.16.: server detail

5.2.16. commit or ci

This is the command used to put the current changes in the working directory into the repository,
giving this a new version and updating the timeline.

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil help commit
Usage: fossil commit ?OPTIONS? ?FILE...?
Create a new version containing all of the changes in the current
checkout. You will be prompted to enter a check-in comment unless
one of the "-m" or "-M" options are used to specify a comment.
"-m" takes a single string for the commit message and "-M" requires
a filename from which to read the commit message. If neither "-m"
nor "-M" are specified then the editor defined in the "editor"
fossil option (see fossil help set) will be used, or from the
"VISUAL" or "EDITOR" environment variables (in that order) if no
editor is set.
You will be prompted for your GPG pass phrase in order to sign the
new manifest unless the "--nosign" options is used. All files that
have changed will be committed unless some subset of files is
specified on the command line.
The --branch option followed by a branch name cases the new check-in
to be placed in the named branch. The --bgcolor option can be followed
by a color name (ex: '#ffc0c0’) to specify the background color of
entries in the new branch when shown in the web timeline interface.
A check-in is not permitted to fork unless the --force or -f
option appears. A check-in is not allowed against a closed check-in.
The --private option creates a private check-in that is never synced.
Children of private check-ins are automatically private.
Options:

——comment | -m COMMENT-TEXT

—--branch NEW-BRANCH-NAME

—--bgcolor COLOR

—--nosign

——force|-£f

--private

—--message—-file|-M COMMENT-FILE
[Pandora-2:jschimpf/Public/FossilBook] jim%

Figure 5.17.: commit details

Updated for fossil version 1.25 Page 61 of 107

z
Y

Fossil Version Control Fossil SCM

It’s a very good idea to always put a comment (-comment or -m) text on any commit. This way you
get documentation in the timeline.

5.3. Maintenance commands

These commands you will probably use less often since the actions they perform are not needed in
normal operation. You will have to use them and referring here or to fossil help will probably be
required before use. Some of them like new or clone are only needed when you start a repository.
Others like rebuild or reconstruct are only needed to fix or update a repository.

5.3.1. new

This command is used to create a new repository.

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil help new
Usage: fossil new ?OPTIONS? FILENAME
Create a repository for a new project in the file named FILENAME.
This command is distinct from "clone". The "clone" command makes
a copy of an existing project. This command starts a new project.
By default, your current login name is used to create the default
admin user. This can be overridden using the -A|--admin-user
parameter.
Options:

——admin-user |—-A USERNAME

—--date-override DATETIME

Figure 5.18.: new details

The file name specifies the new repository name. The options provided allow you to specify the
admin user name if you want it to be different than your current login and the starting date if you
want it to be different than now.

5.3.2. clone

The clone command is used to create your own local version of the master repository. If you are sup-
porting multiple users via a network accessible version of the original repository (see Section 3.2.1
on page 25), then this command will copy that repository to your machine. Also it will make a link
between your copy and the master, so that changes made in your copy will be propagated to the
master.

Updated for fossil version 1.25 Page 62 of 107

<&

Fossil Version Control Fossil SCM

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil help clone
Usage: fossil clone ?0PTIONS? URL FILENAME
Make a clone of a repository specified by URL in the local
file named FILENAME.
By default, your current login name is used to create the default
admin user. This can be overridden using the -A|--admin-user
parameter.
Options:

——admin-user |-A USERNAME

Figure 5.19.: clone details

Just like create you can specify the admin user for this clone with an option. The URL for the master
repository is of the form:

http://<user>:<password>@domain

Where user and password are for a valid user of the selected repository. It is best to check the path
with a browser before doing the clone. Make sure you can reach it, for example the repository for
this book is:

http://pandora.dyn-o-saur.com:8080/cgi-bin/Book.cgi

Putting that into a browser should get you the home page for this book. (See Figure 3.5 on page 27).
After you have verified that, then running the clone command should work.

Don’t forget (as I always do) to put in the file name for the local repository, (see FILENAME above)

5.3.3. open

The open command is used to copy the files in a repository to a working directory. Doing this allows
you to build or modify the product. The command also links this working directory to the repository
so commits will go into the repository.

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil help open

Usage: fossil open FILENAME ?VERSION? ?--keep?

Open a connection to the local repository in FILENAME. A checkout
for the repository is created with its root at the working directory.
If VERSION is specified then that version is checked out. Otherwise
the latest version is checked out. No files other than "manifest"
and "manifest.uuid" are modified if the --keep option is present.

See also the "close" command.

Figure 5.20.: open details

If you have multiple users or have a branched repository then it is probably wise to specify the
particular version you want. When you run this it will create all the files and directories in the
repository in your work area. In addition the files _FOSSIL_, manifiest and manifest.uuid will be
created by Fossil.

Updated for fossil version 1.25 Page 63 of 107

4
1§é;

Fossil Version Control Fossil SCM

5.3.4. close

This is the opposite of open, in that it breaks the connection between this working directory and the
Fossil repository.

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil help close

Usage: fossil close ?-f|--force?
The opposite of "open". Close the current database connection.
Require a -f or --force flag if there are unsaved changed in the

current check-out.

Figure 5.21.: close details

This is useful if you need to abandon the current working directory. Fossil will not let you do this
if there are changes between the current directory and the repository. With the force flag you can
explicitly cut the connection even if there are changes.

5.3.5. version

This command is used to show the current version of fossil.

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil help version
Usage: fossil version

Print the source code version number for the fossil executable.
[Pandora-2:jschimpf/Public/FossilBook] jim% fossil version

This is fossil version [c56af6lebe] 2010-04-22 15:48:25 UTC
[Pandora-2:jschimpf/Public/FossilBook] jim%

Figure 5.22.: version details

The above figure shows the help and example of running the command. When you have problems
with fossil it is very important to have this version information. You can then inquire of the Fossil
news group about this problem and with the version information they can easily tell you if the
problem is fixed already or is new.

5.3.6. rebuild

If you update your copy of Fossil you will want to run this command against all the repositories you
have. This will automatically update them to the new version of Fossil.

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil help rebuild
Usage: fossil rebuild ?REPOSITORY?

Reconstruct the named repository database from the core
records. Run this command after updating the fossil

executable in a way that changes the database schema.

Figure 5.23.: rebuild details

Updated for fossil version 1.25 Page 64 of 107

<&

Fossil Version Control Fossil SCM

5.3.7. all

This command is actually a modifier and when used before certain commands will run them on all
the repositories.

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil help all

Usage: fossil all (list|ls]|pull|push|rebuild]|sync)

The ~/.fossil file records the location of all repositories for a

user. This command performs certain operations on all repositories
that can be useful before or after a period of disconnection operation.
Available operations are:

list Display the location of all repositories
1ls An alias for "list"

pull Run a "pull" operation on all repositories
push Run a "push" on all repositories

rebuild Rebuild on all repositories

sync Run a "sync" on all repositories

Repositories are automatically added to the set of known repositories
when one of the following commands against the repository: clone, info,
pull, push, or sync

Figure 5.24.: all details

5.3.8. push

This command will push changes in the local repository to the master or remote repository.

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil help push
Usage: fossil push ?URL? ?options?

Push changes in the local repository over into a remote repository.
Use the "-R REPO" or "--repository REPO" command-line options

to specify an alternative repository file.

If the URL is not specified, then the URL from the most recent
clone, push, pull, remote-url, or sync command is used.

The URL specified normally becomes the new "remote-url" used for

subsequent push, pull, and sync operations. However, the "--once"
command-line option makes the URL a one-time-use URL that is not
saved.

See also: clone, pull, sync, remote-url

Figure 5.25.: push details

5.3.9. pull

This command will copy changes from the remote repository to the local repository. You could then
use update to apply these changes to checked out files.

Updated for fossil version 1.25 Page 65 of 107

4
1§é;

Fossil Version Control Fossil SCM

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil help pull
Usage: fossil pull ?URL? ?options?

Pull changes from a remote repository into the local repository.
Use the "-R REPO" or "--repository REPO" command-line options

to specify an alternative repository file.

If the URL is not specified, then the URL from the most recent
clone, push, pull, remote-url, or sync command is used.

The URL specified normally becomes the new "remote-url" used for

subsequent push, pull, and sync operations. However, the "--once"
command-line option makes the URL a one-time-use URL that is not
saved.

See also: clone, push, sync, remote-url

Figure 5.26.: pull details

5.3.10. sync

This command is used to sync a remote copy with the original copy of the repository, it does both
a push and pull. This can also be used to switch a local repository to a different main repository by
specifying the URL of a remote repository. If you want to run the update command with -n where
it does a dry run, this does not do a sync first so doing fossil sync then fossil update -n will do that
for you.

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil help sync

Usage: fossil sync ?URL? ?options?

Synchronize the local repository with a remote repository. This is

the equivalent of running both "push" and "pull" at the same time.

Use the "-R REPO" or "--repository REPO" command-line options

to specify an alternative repository file.

If a user-id and password are required, specify them as follows:
http://userid:password@www.domain.com:1234/path

If the URL is not specified, then the URL from the most recent successful

clone, push, pull, remote-url, or sync command is used.

The URL specified normally becomes the new "remote-url" used for

subsequent push, pull, and sync operations. However, the "--once"
command-line option makes the URL a one-time-use URL that is not
saved.

See also: clone, push, pull, remote-url

Figure 5.27.: sync details

5.3.11. clean

This call can be used to remove all the “extra” files in a source tree. This is useful if you wish to
tidy up a source tree or to do a clean build.

Updated for fossil version 1.25 Page 66 of 107

4
1§é;

Fossil Version Control Fossil SCM

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil help clean
Usage: fossil clean ?--force? ?--dotfiles?

Delete all "extra" files in the source tree. "Extra" files are
files that are not officially part of the checkout. See also
the "extra" command. This operation cannot be undone.

You will be prompted before removing each file. If you are

sure you wish to remove all "extra" files you can specify the

optional --force flag and no prompts will be issued.

Files and subdirectories whose names begin with "." are
normally ignored. They are included if the "--dotfiles" option
is used.

Figure 5.28.: clean details

5.3.12. branch

This command is used if you want to create or list branches in a repository. Previously we discussed
forks (See Section 3.4.3 on page 32); branches are the same idea but under user control. This would
be where you have version 1.0 of something but want to branch off version 2.0 to add new features
but want to keep a 1.0 branch for maintenance.

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil help branch
Usage: fossil branch SUBCOMMAND ... ?-R|--repository FILE?
Run various subcommands on the branches of the open repository or
of the repository identified by the -R or --repository option.
fossil branch new BRANCH-NAME BASIS ?-bgcolor COLOR?
Create a new branch BRANCH-NAME off of check-in BASIS.
You can optionally give the branch a default color.
fossil branch list
List all branches

Figure 5.29.: branch details

5.3.13. merge

This command does the opposite of branch, it brings two branches together.

Updated for fossil version 1.25 Page 67 of 107

<&

Fossil Version Control Fossil SCM

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil help merge
Usage: fossil merge [--cherrypick] [--backout] VERSION

The argument is a version that should be merged into the current
checkout. All changes from VERSION back to the nearest common
ancestor are merged. Except, if either of the —--cherrypick or
——backout options are used only the changes associated with the
single check-in VERSION are merged. The --backout option causes
the changes associated with VERSION to be removed from the current
checkout rather than added.

Only file content is merged. The result continues to use the
file and directory names from the current checkout even if those
names might have been changed in the branch being merged in.
Other options:

——detail Show additional details of the merge
—-binary GLOBPATTERN Treat files that match GLOBPATTERN as binary
and do not try to merge parallel changes. This

option overrides the "binary-glob" setting.

Figure 5.30.: merge details

5.3.14. tag

This command can be used to control “tags” which are attributes added to any entry in the time line.
You can also add/delete/control these tags from the UI by going into the timeline, picking an entry
then doing an edit. See Figure ?? on page ?7.

Updated for fossil version 1.25 Page 68 of 107

<&

Fossil Version Control Fossil SCM

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil help tag
Usage: fossil tag SUBCOMMAND
Run various subcommands to control tags and properties
fossil tag add ?--raw? ?--propagate? TAGNAME CHECK-IN ?VALUE?
Add a new tag or property to CHECK-IN. The tag will
be usable instead of a CHECK-IN in commands such as
update and merge. If the --propagate flag is present,
the tag value propagates to all descendants of CHECK-IN
fossil tag cancel ?--raw? TAGNAME CHECK-IN
Remove the tag TAGNAME from CHECK-IN, and also remove
the propagation of the tag to any descendants.
fossil tag find ?--raw? TAGNAME
List all check-ins that use TAGNAME
fossil tag list ?--raw? ?CHECK-IN?
List all tags, or if CHECK-IN is supplied, list
all tags and their values for CHECK-IN.
The option --raw allows the manipulation of all types of tags
used for various internal purposes in fossil. It also shows
"cancel" tags for the "find" and "list" subcommands. You should
not use this option to make changes unless you are sure what
you are doing.
If you need to use a tagname that might be confused with
a hexadecimal baseline or artifact ID, you can explicitly
disambiguate it by prefixing it with "tag:". For instance:
fossil update decaf
will be taken as an artifact or baseline ID and fossil will
probably complain that no such revision was found. However
fossil update tag:decaf
will assume that "decaf" is a tag/branch name.

Figure 5.31.: tag details

5.3.15. settings

This command is used to set or unset a number of properties for fossil.

Updated for fossil version 1.25 Page 69 of 107

9
W

~

Fossil Version Control Fossil SCM

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil help settings
COMMAND: settings
COMMAND: unset
fossil setting ?PROPERTY? ?VALUE? ?-global?
fossil unset PROPERTY ?-global?
The "setting" command with no arguments lists all properties and their
values. With just a property name it shows the value of that property.
With a value argument it changes the property for the current repository.
The "unset" command clears a property setting.

auto-captcha If enabled, the Login page will provide a button
which uses JavaScript to fill out the captcha for
the "anonymous" user. (Most bots cannot use JavaScript.)
If enabled, automatically pull prior to commit
or update and automatically push after commit or
tag or branch creation. If the the value is "pullonly"
then only pull operations occur automatically.
The VALUE is a comma-separated list of GLOB patterns
that should be treated as binary files for merging
purposes. Example: *.xml
When enabled, fossil will attempt to sign all commits
with gpg. When disabled (the default), commits will
be unsigned.

autosync

binary-glob

clearsign

diff-command
dont-push

editor
gdiff-command

http-port

ignore-glob

External command to run when performing a diff.

If undefined, the internal text diff will be used.
Prevent this repository from pushing from client to
server. Useful when setting up a private branch.
Text editor command used for check-in comments.
External command to run when performing a graphical
diff. If undefined, text diff will be used.

The TCP/IP port number to use by the "server"

and "ui" commands. Default: 8080

The VALUE is a comma-separated list of GLOB patterns

specifying files that the "extra" command will ignore.
Example: *.0,*.0b]j, x.exe

If enabled, require that HTTP connections from
127.0.0.1 be authenticated by password. If

false, all HTTP requests from localhost have
unrestricted access to the repository.

Use file modification times (mtimes) to detect when
files have been modified. (Default "on".)

Command used to clear-sign manifests at check-in.
The default is "gpg —--clearsign -o ".

URL of the HTTP proxy. If undefined or "off" then
the "http_proxy" environment variable is consulted.
If the http_proxy environment variable is undefined
then a direct HTTP connection is used.

A shell command used to launch your preferred

web browser when given a URL as an argument.
Defaults to "start" on windows, "open" on Mac,

and "firefox" on Unix.

localauth
mtime-changes
pgp-command

proxy

web-browser

Figure 5.32.: settings details

5.4. Miscellaneous

These are commands that don’t seem to fit in any category but are useful.

Updated for fossil version 1.25 Page 70 of 107

4
1§é;

Fossil Version Control Fossil SCM

5.4.1. zip

You can do what this command does from the web based user interface. In Figure 2.13 on page 13
you can download a ZIP archive of the particular version of the files. This command lets you do it
from the command line.

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil help zip

Usage: fossil zip VERSION OUTPUTFILE [--name DIRECTORYNAME]

Generate a ZIP archive for a specified version. If the —--name option is
used, it argument becomes the name of the top-level directory in the
resulting ZIP archive. If --name is omitted, the top-level directory
named is derived from the project name, the check-in date and time, and
the artifact ID of the check-in.

Figure 5.33.: zip detail

5.4.2. user

This command lets you modify user information. Again this is a command line duplication of what
you can do from the user interface in the browser, see Figure 3.6 on page 29.

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil help user
Usage: fossil user SUBCOMMAND ... ?-R|--repository FILE?
Run various subcommands on users of the open repository or of
the repository identified by the -R or —--repository option.
fossil user capabilities USERNAME ?STRING?
Query or set the capabilities for user USERNAME
fossil user default ?USERNAME?
Query or set the default user. The default user is the
user for command-line interaction.
fossil user list
List all users known to the repository
fossil user new ?USERNAME? ?CONTACT-INFO? ?PASSWORD?
Create a new user in the repository. Users can never be
deleted. They can be denied all access but they must continue
to exist in the database.
fossil user password USERNAME ?PASSWORD?
Change the web access password for a user.

Figure 5.34.: user detail

5.4.3. finfo

This command will print the history of any particular file. This can be useful if you need this history
in some other system. You can pass this text file to the other system which can than parse and use
the data.

Updated for fossil version 1.25 Page 71 of 107

4
1§é;

Fossil Version Control Fossil SCM

[Pandora-2

:jschimpf/Public/FossilBook] jim% fossil help finfo

Usage: fossil finfo FILENAME

Print the change history for a single file.

The "--limit N" and "--offset P" options limits the output to the first
N changes after skipping P changes.

Figure 5.35.: finfo detail

An example would be to run it on the outline.txt file in our book directory:

[Pandora-2
History of
2010-05-17
2010-05-12
2010-05-10
2010-05-09
2010-05-07
2010-05-03
2010-05-03
2010-04-30

2010-04-29
2010-04-27

2010-04-26

2010-04-25
[Pandora-2

:jschimpf/Public/FossilBook] jim% fossil finfo outline.txt
outline.txt
[0272dc0169] Finished maintenance commands (user: Jjim, artifact:
[25b6e38e97])
[5e5c0£7d55] End of day commit (user: Jjim, artifact: [dlald31lfbd])
[e924ca3525] End of day update (user: jim, artifact: [7cdl19079%al]
[0abb95b046] Intermediate commit, not done with basic commands
(user: Jjim, artifact: [6f7bcd48b9])
[6921e453cd] Update outline & book corrections (user: jim,
artifact: [4eff85c793])
[158492516¢c] Moved to clone repository (user: jim, artifact:
[230729cb66])
[1a403c87fc] Update before moving to server (user: jim, artifact:
[706a9d394d])
[fa5b9247bd] Working on chapter 1 (user: jim, artifact:
[7bb188f0c6]
[51be6423a3] Update outline (user: jim, artifact: [7cd39dfal6])
[39bc728527] [1665c78d94] Ticket Use (user: jim, artifact:
[1f82aafdlc])
[497093858f] Update to catch changes in outline (user: jim,
artifact: [b870231e48])
[8£a0708186] Initial Commit (user: jim, artifact: [34a460a468])
:jschimpf/Public/FossilBook] jim%

5.4.4. timeline

This prints out the timeline of the project in various ways. The command would be useful if you
were building a GUI front end for Fossil and wanted to display the timeline. You could issue this
command and get the result back and display it in your Ul There are a number of options in the
command to control the listing.

Updated for fossil version 1.25 Page 72 of 107

Fossil Version Control Fossi

<&

SCM

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil help timeline
Usage: fossil timeline ?WHEN? ?BASELINE|DATETIME? ?-n N? ?-t TYPE?
Print a summary of activity going backwards in date and time
specified or from the current date and time if no arguments

are given. Show as many as N (default 20) check-ins. The
WHEN argument can be any unique abbreviation of one of these
keywords:

before

after

descendants | children

ancestors | parents
The BASELINE can be any unique prefix of 4 characters or more.
The DATETIME should be in the IS08601 format. For
examples: "2007-08-18 07:21:21". You can also say "current"
for the current version or "now" for the current time.
The optional TYPE argument may any types supported by the /timeline
page. For example:

w = wiki commits only
ci = file commits only
t = tickets only

Figure 5.36.: timeline detail

5.4.5. wiki

This command allows you to have command line control of the wiki. Again this is useful if you
were writing a shell to control Fossil or wanted to add a number of computer generated pages to the

Wiki.

Updated for fossil version 1.25 Page 73 of 107

4
1§é;

Fossil Version Control Fossil SCM

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil help wiki
Usage: fossil wiki (export|create|commit|list) WikiName
Run various subcommands to work with wiki entries.
fossil wiki export PAGENAME ?FILE?
Sends the latest version of the PAGENAME wiki
entry to the given file or standard output.
fossil wiki commit PAGENAME ?FILE?
Commit changes to a wiki page from FILE or from standard
input.
fossil wiki create PAGENAME ?FILE?
Create a new wiki page with initial content taken from
FILE or from standard input.
fossil wiki list
Lists all wiki entries, one per line, ordered
case-insentively by name.
TODOs :
fossil wiki export ?-u ARTIFACT? WikiName ?FILE?
Outputs the selected version of WikiName.
fossil wiki delete ?-m MESSAGE? WikiName
The same as deleting a file entry, but i don’t know if fossil
supports a commit message for Wiki entries.
fossil wiki ?-u? ?-d? ?-s=[]]? list
Lists the artifact ID and/or Date of last change along with
each entry name, delimited by the -s char.
fossil wiki diff ?ARTIFACT? ?-f infile[=stdin]? EntryName
Diffs the local copy of a page with a given version (defaulting
to the head version).

Figure 5.37.: wiki detail

5.5. Advanced

These are commands that you will rarely have to use. These are functions that are needed to do very
complicated things with Fossil. If you have to use these you are probably way beyond the audience
for this book.

5.5.1. scrub

This is used to removed sensitive information like passwords from a repository. This allows you to
then send the whole repository to someone else for their use.

Updated for fossil version 1.25 Page 74 of 107

4
1§é;

Fossil Version Control Fossil SCM

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil help scrub

COMMAND: scrub

fossil scrub [--verily] [-—-force] [REPOSITORY]

The command removes sensitive information (such as passwords) from a
repository so that the repository can be sent to an untrusted reader.
By default, only passwords are removed. However, if the --verily option
is added, then private branches, concealed email addresses, IP
addresses of correspondents, and similar privacy-sensitive fields

are also purged.

This command permanently deletes the scrubbed information. The effects
of this command are irreversible. Use with caution.

The user is prompted to confirm the scrub unless the —--force option

is used.

Figure 5.38.: scrub detail

5.5.2. search

This is used to search the timeline entries for a pattern. This can also be done in your browser on
the timeline page.

[Pandora-2: jschimpf/Public/FossilBook] jim% fossil help search
COMMAND: search

fossil search pattern...

Search for timeline entries matching the pattern.

Figure 5.39.: search detail

5.5.3. shaisum

This can compute the shal value for a particular file. These sums are the labels that Fossil uses on
all objects and should be unique for any file.

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil help shalsum
COMMAND: shalsum

fossil shalsum FILE...

Compute an SHAl checksum of all files named on the command-line.
If an file is named "-" then take its content from standard input.

Figure 5.40.: shalsum detail

Updated for fossil version 1.25 Page 75 of 107

4
1§é,

Fossil Version Control Fossil SCM

5.5.4. rstats

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil help rstats
Usage: fossil rstats

Deliver a report of the repository statistics for the

current checkout.

Figure 5.41.: rstats detail

For example, running it on the Fossil Book checkout:

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil rstats
Number of Artifacts: 137
59 full text + 78 delta blobs
278961 bytes average, 38217738 bytes total
Number Of Checkins: 26
Number Of Files: 37
Number Of Wiki Pages: 2
Number Of Tickets: 6
Duration Of Project: 23 days

5.5.5. configuration

This command allows you to save or load a custom configuration of Fossil.

Updated for fossil version 1.25 Page 76 of 107

<&

Fossil Version Control Fossil SCM

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil help configuration
Usage: fossil configure METHOD
Where METHOD is one of: export import merge pull push reset. All methods
accept the -R or —--repository option to specific a repository.
fossil configuration export AREA FILENAME
Write to FILENAME exported configuration information for AREA.
AREA can be one of: all ticket skin project
fossil configuration import FILENAME
Read a configuration from FILENAME, overwriting the current
configuration.
fossil configuration merge FILENAME
Read a configuration from FILENAME and merge its values into
the current configuration. Existing values take priority over
values read from FILENAME.
fossil configuration pull AREA ?URL?
Pull and install the configuration from a different server
identified by URL. If no URL is specified, then the default
server is used.
fossil configuration push AREA ?URL?
Push the local configuration into the remote server identified
by URL. Admin privilege is required on the remote server for
this to work.
fossil configuration reset AREA
Restore the configuration to the default. AREA as above.
WARNING: Do not import, merge, or pull configurations from an untrusted
source. The inbound configuration is not checked for safety and can
introduce security wvulnerabilities.

Figure 5.42.: configuration detail

5.5.6. descendants

This is used to find where the checked out files are in the time line.

[Pandora-2:jschimpf/Public/FossilBook] jim% fossil help descendants
Usage: fossil descendants ?BASELINE-ID?

Find all leaf descendants of the baseline specified or if the argument
is omitted, of the baseline currently checked out.

Figure 5.43.: descendants detail

Updated for fossil version 1.25 Page 77 of 107

6. Fossil Customization - the TH Scripting
language

6.1. Introduction to TH

6.1.1. TH is a Tcl-like language

TH is a string-based command language closely based on the Tcl language. The language has only a
few fundamental constructs and relatively little syntax which is meant to be simple. TH is designed
to be the scripting language of the “Fossil” source code management system. TH is an interpreted
language and it is parsed, compiled and executed when the script runs. In Fossil, TH scripts are
typically run to build web pages, often in response to web form submissions.

The basic mechanisms of TH are all related to strings and string substitutions. The TH/Tcl way
of doing things is a little different from some other programming languages with which you may
already be familiar, so it is worth making sure you understand the basic concepts.

6.2. The “Hello, world” program
The traditional starting place for a language introduction is the classic "Hello, World" program. In
TH this program has only a single line:

puts “Hello, world\n”

The command to output a string in TH is the puts command. A single unit of text after the puts
command will be printed to the output stream. If the string has more than one word, you must
enclose the string in double quotes or curly brackets. A set of words enclosed in quotes or curly
brackets is treated as a single unit, while words separated by white space are treated as multiple
arguments to the command.

6.3. TH structure and syntax

6.3.1. Datatypes

TH has at its core only a single data type which is string. All values in TH are strings, variables
hold strings and the procedures return strings. Strings in TH consist of single byte characters and

79

d

Fossil Version Control Fossil SCM

are zero terminated. Characters outside of the ASCII range, i.e. characters in the 0x80-0xff range
have no TH meaning at all: they are not considered digits or letters, nor are they considered white
space.

Depending on context, TH can interpret a string in four different ways. First of all, strings can be
just that: text consisting of arbitrary sequences of characters. Second, a string can be considered a
list, an ordered sequence of words separated by white space. Third, a string can be a command. A
command is a list where the first word is interpreted as the name of a command, optionally followed
by further argument words. Fourth, and last, a string can be interpreted as an expression.

The latter three interpretations of strings are discussed in more detail below.

6.3.2. Lists

A listin TH is an ordered sequence of items, or words separated by white space. In TH the following
characters constitute white space:

logo FossilBook Artifact Content Logged in as frans Home
Timeline Files Branches Tags Tickets Wiki Admin Logout
Download Hex Shun Artifact
7b03c1lc83£fcd092b090adall2ed76356e9496f2d
File fossilbook.lyx 2010-06-26 12:28:12 - part of checkin
[9ad19c40d6] on branch trunk - Added section on TH
scripting [b832f46d31] (user: Jjim) [annotate]
logo FossilBook Artifact Content Logged in as frans Home
Timeline Files Branches Tags Tickets Wiki Admin Logout
Download Hex Shun Artifact
7b03c1lc83fcd092b090adal02ed76356e9496£2d
File fossilbook.lyx 2010-06-26 12:28:12 - part of checkin
[9ad19c40d6] on branch trunk - Added section on TH
scripting [b832f46d31] (user: jim) [annotate]

rs 0x20

"\t 0x09

"\n’ 0x0A

"\v’ 0x0B

"\f’ 0x0C

"\xr’ 0x0D

A word can be any sequence of characters delimited by white space. It is not necessary that a word
is alphanumeric at all: “.%*” is a valid word in TH. If a word needs to contain embedded white
space characters, it needs to be quoted, with either a double quotes or with opening/closing curly
brackets. Quoting has the effect of grouping the quoted content into a single list element.

Words cannot start with one of the TH special characters { } []\; and ". Note that a single quote
¢ is not a special character in TH. To use one of these characters to start a word it must be escaped,
which is discussed further later on.

Updated for fossil version 1.25 Page 80 of 107

d

Fossil Version Control Fossil SCM

TH offers several built-in commands for working with lists, such as counting the number of words
in a list, retrieving individual words from the list by index and appending new items to a list. These
commands are discussed in the section “Working with lists”.

6.3.3. Commands

TH casts everything into the mold of a command, even programming constructs like variable as-
signment and procedure definition. TH adds a tiny amount of syntax needed to properly invoke
commands, and then it leaves all the hard work up to the command implementation.

Commands are a special form of list. The basic syntax for a TH command is:
command argl arg2 arg3

The command is either the name of a built-in command or a TH procedure.

White space is used to separate the command name and its arguments, and a newline character or
semicolon is used to terminate a command. TH comments are lines with a “#” character at the
beginning of the line, or with a “#” character after the semicolon terminating a command.

6.3.4. Grouping & substitution

TH does not interpret the arguments to the commands except to perform grouping, which allows
multiple words in one argument, and substitution, which is used to deal with special characters, to
fetch variables and to perform nested command calls. Hence, the behavior of the TH command
processor can be summarized in three basic steps:

1. Argument grouping.
2. Value substitution of backslash escapes, variables and nested commands
3. Command invocation.

Note that there is no step to evaluate the arguments to a command. After substitution, arguments are
passed verbatim to the command and it is up to the command to evaluate its arguments as needed.

6.3.4.1. Argument grouping

TH has two mechanisms for grouping multiple words into a single item:

[T

e Double quotes,
e Curly brackets, { }

Whilst both have the effect of grouping a set of words, they have different impact on the next phase
of substitution. In brief, double quotes only group their content and curly brackets group and prevent
all substitution on their content.

Grouping proceeds from left to right in the string and is not affected by the subsequent substitution.
If a substitution leads to a string which would be grouped differently, it has no effect, as the grouping
has already been decided in the preceding grouping phase.

Updated for fossil version 1.25 Page 81 of 107

d

Fossil Version Control Fossil SCM

6.3.4.2. Value substitutions

TH performs three different substitutions (see the th.c/thSubstWord code for details)
e Backslash escape substitution
e Variable substitution
e Nested command substitution

Like grouping, substitution proceeds from left to right and is performed only once: if a substitution
leads to a string which could again be substituted such this not happen.

6.3.4.3. Backslash escape substitution.

In general, the backslash (\) disables substitution for the single character immediately following the
backslash. Any character immediately following the backslash will stand as literal. This is useful
to escape the special meaning of the characters { } []\; and ".

There are two specific strings which are replaced by specific values during the substitution phase.
A backslash followed by the letter ‘n’ gets replaced by the newline character, as in C. A backslash
followed by the letter ‘x’ and two hexadecimal digits gets replaced by the character with that value,
i.e. writing “\x20” is the same as writing a space. Note that the \x substitution does not "keep
going" as long as it has hex digits as in Tcl, but insists on two digits. The word \x2121 is not a
single exclamation mark, but the 3 letter word !21.

6.3.4.4. Variable substitution

Like any programming language, TH has a concept of variables. TH variables are named containers
that hold string values. Variables are discussed in more detail later in this document, for now we
limit ourselves to variable substitution.

The dollar sign ($) may be used as a special shorthand form for substituting variable values. If
$ appears in an argument that isn’t enclosed in curly brackets then variable substitution will occur.
The characters after the $, up to the first character that isn’t a number, letter, or underscore, are taken
as a variable name and the string value of that variable is substituted for the name. For example, if
variable foo has the value test, then the command “puts $foo.c” is equivalent to the command:

"puts test.c”

There are two special forms for variable substitution. If the next character after the name of the
variable is an open parenthesis, then the variable is assumed to be an array name, and all of the
characters between the open parenthesis and the next close parenthesis are taken as an index into the
array. Command substitutions and variable substitutions are performed on the information between
the parentheses before it is used as an index. For example, if the variable x is an array with one
element named first and value 87 and another element named 14 and value more, then the command

puts xyz$x (first)zyx

Updated for fossil version 1.25 Page 82 of 107

d

Fossil Version Control Fossil SCM

is equivalent to the command
puts xyz87zyx

If the variable index has the value ‘14’, then the command
puts xyz$x ($index) zyx

is equivalent to the command
puts xXyzmorezyx

See the section Variables and arrays below for more information on arrays.

The second special form for variables occurs when the dollar sign is followed by an open curly
bracket. In this case the variable name consists of all the characters up to the next curly bracket.
Array references are not possible in this form: the name between curly brackets is assumed to refer
to a scalar variable. For example, if variable foo has the value ‘test’, then the command

set a abcS${foo}bar
is equivalent to the command
set a abctestbar

A dollar sign followed by something other than a letter, digit, underscore, or left parenthesis is
treated as a literal dollar sign. The following prints a single character $.

puts x $

6.3.4.5. Command Substitution

The last form of substitution is command substitution. A nested command is delimited by square
brackets, []. The TH interpreter takes everything between the brackets and evaluates it as a com-
mand. It rewrites the outer command by replacing the square brackets and everything between them
with the result of the nested command.

Example:

puts [string length foobar]
=> 6

In the example, the nested command is: string length foobar. This command returns the length of
the string foobar. The nested command runs first. Then, command substitution causes the outer
command to be rewritten as if it were:

puts 6

If there are several cases of command substitution within a single command, the interpreter pro-
cesses them from left to right. As each right bracket is encountered, the command it delimits is
evaluated. This results in a sensible ordering in which nested commands are evaluated first so that
their result can be used in arguments to the outer command.

Updated for fossil version 1.25 Page 83 of 107

d

Fossil Version Control Fossil SCM

6.3.4.6. Argument grouping revisited

During the substitution phase of command evaluation, the two grouping operators, the curly bracket
and the double quote are treated differently by the TH interpreter.

Grouping words with double quotes allows substitutions to occur within the double quotes. A
double quote is only used for grouping when it comes after white space. The string a”’b” is a normal
4 character string, and not the two character string ab.

puts a”b”
=> a”’b"”

Grouping words within curly brackets disables substitution within the brackets. Again, A opening
curly bracket is only used for grouping when it comes after white space. Characters within curly
brackets are passed to a command exactly as written, and not even backslash escapes are processed.

Note that curly brackets have this effect only when they are used for grouping (i.e. at the beginning
and end of a sequence of words). If a string is already grouped, either with double quotes or curly
brackets, and the curly brackets occur in the middle of the grouped string (e.g. "foo{bar"), then the
curly brackets are treated as regular characters with no special meaning. If the string is grouped
with double quotes, substitutions will occur within the quoted string, even between the brackets.

The square bracket syntax used for command substitution does not provide grouping. Instead, a
nested command is considered part of the current group. In the command below, the double quotes
group the last argument, and the nested command is just part of that group:

puts "The length of $s is [string length $s]."

If an argument is made up of only a nested command, you do not need to group it with double-quotes
because the TH parser treats the whole nested command as part of the group. A nested command
is treated as an unbroken sequence of characters, regardless of its internal structure. It is included
with the surrounding group of characters when collecting arguments for the main command.

6.3.5. Summary

The following rules summarize the fundamental mechanisms of grouping and substitution that are
performed by the TH interpreter before it invokes a command:

e Command arguments are separated by white space, unless arguments are grouped with curly
brackets or double quotes as described below.

e Grouping with curly brackets, {}, prevents substitutions. Curly brackets nest. The interpreter
includes all characters between the matching left and right brace in the group, including new-
lines, semicolons, and nested curly brackets. The enclosing (i.e., outermost) curly brackets
are not included in the group’s value.

nn

e Grouping with double quotes, " ", allows substitutions. The interpreter groups everything until
another double quote is found, including newlines and semicolons. The enclosing quotes are
not included in the group of characters. A double-quote character can be included in the group
by quoting it with a backslash, (i.e. \").

Updated for fossil version 1.25 Page 84 of 107

d

Fossil Version Control Fossil SCM

e Grouping decisions are made before substitutions are performed, which means that the values
of variables or command results do not affect grouping.

e A dollar sign, $, causes variable substitution. Variable names can be any length, and case is
significant. If variable references are embedded into other strings, or if they include characters
other than letters, digits, and the underscore, they can be distinguished with the ${varname}
syntax.

e Square brackets, [], cause command substitution. Everything between the brackets is treated
as a command, and everything including the brackets is replaced with the result of the com-
mand. Nesting is allowed.

e The backslash character, \, is used to quote special characters. You can think of this as another
form of substitution in which the backslash and the next character or group of characters is
replaced with a new character.

e Substitutions can occur anywhere unless prevented by curly bracket grouping. Part of a group
can be a constant string, and other parts of it can be the result of substitutions. Even the
command name can be affected by substitutions.

e A single round of substitutions is performed before command invocation. The result of a
substitution is not interpreted a second time. This rule is important if you have a variable
value or a command result that contains special characters such as spaces, dollar signs, square
brackets, or curly brackets. Because only a single round of substitution is done, you do not
have to worry about special characters in values causing extra substitutions.

6.3.5.1. Caveats

e A common error is to forget a space between arguments when grouping with curly brackets
or quotes. This is because white space is used as the separator, while the curly brackets or
quotes only provide grouping. If you forget the space, you will get syntax errors about the
wrong number of arguments being applied. The following is an error because of the missing
space between } and {:

if {$x > 1}{puts "x = $x"}

e When double quotes are used for grouping, the special effect of curly brackets is turned
off. Substitutions occur everywhere inside a group formed with double quotes. In the next
command, the variables are still substituted:

set x xvalue
set y "foo {$x} bar"
=> foo {xvalue} bar

e Spaces are not required around the square brackets used for command substitution. For the
purposes of grouping, the interpreter considers everything between the square brackets as part
of the current group.

Updated for fossil version 1.25 Page 85 of 107

d

Fossil Version Control Fossil SCM

6.4. TH expressions

The TH interpreter itself does not evaluate math expressions. TH just does grouping, substitutions
and command invocations. However, several built-in commands see one of more of their arguments
as expressions and request the interpreter to calculate the value of such expressions.

The expr command is the simplest such command and is used to parse and evaluate expressions:

puts [expr 7.4/2]
=> 3.7

Note that an expression can contain white space, but if it does it must be grouped in order to be
recognized as a single argument.

Within the context of expression evaluation TH works with three datatypes: two types of number,
integer and floating point, and string. Integer values are promoted to floating point values as needed.
The Boolean values True and False are represented by the integer values 1 and O respectively. The
implementation of expr is careful to preserve accurate numeric values and avoid unnecessary con-
versions between numbers and strings.

Before expression evaluation takes place, both variable and command substitution is performed on
the expression string. Hence, you can include variable references and nested commands in math
expressions, even if the expression string was originally quoted with curly brackets. Note that
backslash escape substitution is not performed by the expression evaluator.

A TH expression consists of a combination of operands, operators, and parentheses. White space
may be used between the operands and operators and parentheses; it is ignored by the expression
processor. Where possible, operands are interpreted as integer values. If an operand is not in integer
format, then it is treated as a floating-point number if that is possible. Floating-point numbers may
be specified in any of the ways accepted by an ANSI-compliant C compiler. For example, all of the
following are valid floating-point numbers: 2.1, 3., 6e4, 7.91e+16. If no numeric interpretation is
possible, then an operand is left as a string (and only a limited set of operators may be applied to it).

Operands may be specified in any of the following ways:
e As a numeric value, either integer or floating-point.

e Asastring enclosed in curly brackets. The characters between the opening bracket and match-
ing closing bracket are used as the operand without any substitutions.

e As a string enclosed in double quotes. The expression parser performs variable and com-
mand substitutions on the information between the quotes, and uses the resulting value as the
operand.

e Asa TH variable, using standard $ notation. The variable’s value is used as the operand.

e Asa TH command enclosed in square brackets. The command will be executed and its result
will be used as the operand.

Where substitutions occur above (e.g. inside quoted strings), they are performed by the expression
processor. However, an additional layer of substitution may already have been performed by the

Updated for fossil version 1.25 Page 86 of 107

d

Fossil Version Control Fossil SCM

command parser before the expression processor was called. As discussed below, it is usually best to
enclose expressions in curly brackets to prevent the command parser from performing substitutions
on the contents.

The valid operators are listed below, grouped in decreasing order of precedence:

] Operators | Action

+-~ Unary plus, unary minus, bit-wise NOT, logical NOT.
None of these operands may be applied to string
operands, and bit-wise NOT may be applied only to
integers.
*1 % Multiply, divide, remainder. None of these operands may
be applied to string operands, and remainder may be
applied only to integers.
+ - Add and subtract. Valid for numeric operands only.

<< >> Left and right shift. Valid for integer operands only
< ><=>= | Boolean less, greater, less than or equal, and greater than
or equal. Each operator produces 1 if the condition is
true, 0 otherwise. These operators may be applied to
strings as well as numeric operands, in which case string
comparison is used.
=!= Boolean equal and not equal. Each operator produces a
zero/one result as per above. Valid for all operand types.
eq ne Compare two strings for equality (eq) or inequality (ne).
These operators return 1 (true) or O (false). Using these
operators ensures that the operands are regarded
exclusively as strings, not as possible numbers:
& Bit-wise AND. Valid for integer operands only.
Bit-wise XOR. Valid for integer operands only

I Bit-wise OR. Valid for integer operands only
&& Logical AND. Produces a 1 result if both operands are
non-zero, 0 otherwise Valid for integer operands only.
Note: there is no “shortcut evaluation”: the right hand is
evaluated even if the left hand evaluated to false.
| Logical OR. Produces a 1 result if either operand is
non-zero, 0 otherwise Valid for integer operands only.
Note: there is no “shortcut evaluation”: the right hand is
evaluated even if the left hand evaluated to true

>

All of the binary operators group left-to-right within the same precedence level. For example, the
expression ‘4*2 <7’ evaluates to 0.

All internal computations involving integers are done with the C type int, and all internal com-
putations involving floating-point are done with the C type double. Conversion among internal
representations for integer, floating-point, and string operands is done automatically as needed. For

Updated for fossil version 1.25 Page 87 of 107

d

Fossil Version Control Fossil SCM

arithmetic computations, integers are used until some floating-point number is introduced, after
which floating-point is used.

String values may be used as operands of the comparison operators, although the expression eval-
uator tries to do comparisons as integer or floating-point when it can. If one of the operands of a
comparison is a string and the other has a numeric value, the numeric operand is converted back to
a string.

6.5. TH variables

Like almost all programming languages TH has the concept of variables. TH variables bind a name
to a string value. A variable name must be unique in its scope, either the global scope or a local
scope. TH supports two types of variables: scalars and arrays.

TH allows the definition of variables and the use of their values either through ‘$’-style variable
substitution, the set command, or a few other mechanisms. Variables need not be declared: a new
variable will automatically be created each time a new variable name is used.

6.5.1. Working with variables

TH has two key commands for working with variables, set and unset:

set varname ?value?
unset wvarname
info exists wvarname

The set command returns the value of variable varname. If the variable does not exist, then an
error is thrown. If the optional argument value is specified, then the set command sets the value
of varname to value, creating a new variable in the current scope if one does not already exist, and
returns its value.

The unset command removes a variable from its scope. The argument varname is a variable name.
If varname refers to an element of an array, then that element is removed without affecting the rest
of the array. If varname consists of an array name with no parenthesized index, then the entire array
is deleted. The unset command returns an empty string as result. An error occurs if the variable
doesn’t exist.

The info exists command returns ‘1’ if the variable named varname exists in the current scope,
either the global scope or the current local scope, and returns ‘0’ otherwise.

6.5.1.1. Scalar variables and array variables

TH supports two types of variables: scalars and arrays. A scalar variable has a single value, whereas
an array variable can have any number of elements, each with a name (called its "index") and a value.
TH arrays are one-dimensional associative arrays, i.e. the index can be any single string.

Updated for fossil version 1.25 Page 88 of 107

d

Fossil Version Control Fossil SCM

If varname contains an open parenthesis and ends with a close parenthesis, then it refers to an array
element: the characters before the open parenthesis are the name of the array, and the characters be-
tween the parentheses are the index within the array. Otherwise varname refers to a scalar variable.

For example, the command set [x(first) 44] will modify the element of x whose index is first so that
its new value is 44. Two-dimensional arrays can be simulated in TH by using indices that contain
multiple concatenated values. For example, the commands

set a(2,3) 1
set a(3,6) 2

set the elements of a whose indices are 2,3 and 3,6.

In general, array elements may be used anywhere in TH that scalar variables may be used. If an
array is defined with a particular name, then there may not be a scalar variable with the same name.
Similarly, if there is a scalar variable with a particular name then it is not possible to make array
references to the variable. To convert a scalar variable to an array or vice versa, remove the existing
variable with the unset command.

6.5.1.2. Variable scope

Variables exist in a scope. The TH interpreter maintains a global scope that is available to and shared
by all commands executed by it. Each invocation of a user defined command creates a new local
scope. This local scope holds the arguments and local variables of that user command invocation
and only exists as long a the user command is executing.

If not in the body of user command, then references to varname refer to a global variable, i.e. a
variable in the global scope. In contrast, in the body of a user defined command references to
varname refer to a parameter or local variable of the command. However, in the body of a user
defined command, a global variable can be explicitly referred to by preceding its name by ::.

TH offers a special command to access variables not in the local scope of the current command but
in the local scope of the call chain of commands that leas to the current command. This is the upvar
command:

upvar ?frame? othervar myvar ?othervar myvar ...?

The upvar command arranges for one or more local variables in the current procedure to refer to
variables in an enclosing procedure call, or to global variables. If frame is an integer, then it gives a
distance (up the command calling stack) to move. The argument frame may be omitted if othervar
is not an integer (frame then defaults to ‘1’). For each othervar argument, the upvar command
makes the variable by that name in the local scope identified by the frame offset accessible in the
current procedure by the name given in the corresponding myvar argument. The variable named by
othervar need not exist at the time of the call; it will be created the first time myvar is referenced,
just like an ordinary variable. The upvar command is only meaningful from within user defined
command bodies. Neither othervar nor myvar may refer to an element of an array. The upvar
command returns an empty string. The upvar command simplifies the implementation of call-by-
name procedure calling and also makes it easier to build new control constructs as TH commands.
For example, consider the following procedure:

Updated for fossil version 1.25 Page 89 of 107

d

Fossil Version Control Fossil SCM

proc incr {name} {
upvar $name x
set x [expr S$x+1]

}

incr is invoked with an argument giving the name of a variable, and it adds one to the value of that
variable.

6.6. TH commands, scripts and program flow

In TH there is actually no distinction between commands (often known as ‘statements’ and "func-
tions’ in other languages) and "syntax". There are no reserved words (like if and while) as exist
in C, Java, Python, Perl, etc. When the TH interpreter starts up there is a list of built-in, known
commands that the interpreter uses to parse a line. These commands include for, set, puts, and so
on. They are, however, still just regular TH commands that obey the same syntax rules as all TH
commands, both built-in, and those that you create yourself with the proc command.

6.6.1. Commands revisited

Like Tcl, TH is build up around commands. A command does something for you, like outputting a
string, computing a math expression, or generating HTML to display a widget on the screen.

Commands are a special form of list. The basic syntax for a TH command is:
command argl arg2 arg3

The command is either the name of a built-in command or a TH procedure.

White space is used to separate the command name and its arguments, and a newline character or
semicolon is used to terminate a command. TH comments are lines with a “#” character at the
beginning of the line, or with a “#” character after the semicolon terminating a command.

6.6.2. Scripts

Normally, control in TH flows from one command to the next. The next command is either in the
same list (if the current command is terminated with a semicolon) or in the next input line. A TH
program is thus a TH list of commands.

Such a list of commands is referred to as a “script”. A script is hence a self contained code fragment
containing one or more commands. The commands in a script are analogous to statements in other
programming languages.

Some commands take one or more scripts as arguments and run those scripts zero or more times
depending on the other arguments. For example, the if command executes either the then script or
the else script once, depending on the if expression being true or false. The command that takes a
script will perform the normal grouping and substitution as part of executing the script.

Updated for fossil version 1.25 Page 90 of 107

d

Fossil Version Control Fossil SCM

Note that the script always needs to be enclosed in curly brackets to prevent substitu-
tion taking place twice: once as part of the execution of the top level command and
once again when preparing the script. Forgetting to enclose a script argument in curly
brackets is common source of errors.

A few commands (return, error, break and continue) immediately stop execution of the current
script instead of passing control to the next command in the list. Control is instead returned to the
command that initiated the execution of the current script.

6.6.3. Command result codes

Each command produces two results: a result code and a string. The code indicates whether the
command completed successfully or not, and the string gives additional information. The valid
codes are defined in ‘th.h’, and are:

Name \ Value \ Meaning
TH_OK 0 This is the normal return code. The string gives the command’s return value

TH_ERROR 1 Indicates that an error occurred; the string gives a
message describing the error.

TH_RETURN 3 Indicates that the return command has been invoked. The
string gives the return value for the procedure or
command.

TH_BREAK 2 Indicates the innermost loop should abort immediately.
The string contains “break”™ or the argument of break, if
any

TH_CONTINUE 4 Indicates that the innermost loop should go on to the next
iteration.. The string contains “break” or the argument of
break, if any

TH programmers do not normally need to think about return codes, since TH_OK is almost always
returned. If anything else is returned by a command, then the TH interpreter immediately stops
processing commands and returns to its caller. If there are several nested invocations of the TH
interpreter in progress, then each nested command will usually return the error to its caller, until
eventually the error is reported to the top-level application code. The application will then display
the error message for the user.

In a few cases, some commands will handle certain "error" conditions themselves and not return
them upwards. For example, the for command checks for the TH_BREAK code; if it occurs, for
stops executing the body of the loop and returns TH_OK to its caller. The for command also
handles TH_CONTINUE codes and the procedure interpreter handles TH_RETURN codes. The
catch command allows TH programs to catch errors and handle them without aborting command
interpretation any further.

Updated for fossil version 1.25 Page 91 of 107

d

Fossil Version Control Fossil SCM

6.6.4. Flow control commands

The flow control commands in TH are:

if exprl bodyl ?elseif expr2 body2? ? ?else? bodyN?
for init condition incr script

break ?value?

continue ?value?

error ?value?

catch script ?varname?

Below each command is discussed in turn

The if command has the following syntax:
if exprl bodyl ?elseif expr2 body2? ? ?else? bodyN?

The expr arguments are expressions, the body arguments are scripts and the elsif and else arguments
are keyword constant strings. The if command optionally executes one of its body scripts.

The expr arguments must evaluate to an integer value. If it evaluates to a non-zero value the follow-
ing body script is executed and upon return from that script processing continues with the command
following the if command. If an expr argument evaluates to zero, its body script is skipped and the
next option is tried. When there are no more options to try, processing also continues with the next
command.

The if command returns the value of the executed script, or “0” when no script was executed.

The for command has the following syntax:
for init condition incr body

The init, incr and body arguments are all scripts. The condition argument is an expression yielding
an integer result. The for command is a looping command, similar in structure to the C for statement.

The for command first invokes the TH interpreter to execute init. Then it repeatedly evaluates con-
dition as an expression; if the result is non-zero it invokes the TH interpreter on body, then invokes
the TH interpreter on incr, then repeats the loop. The command terminates when test evaluates to
ZEero.

If a continue command is invoked within execution of the body script then any remaining commands
in the current execution of body are skipped; processing continues by invoking the TH interpreter
on incr, then evaluating condition, and so on. If a break command is invoked within body or next,
then the for command will return immediately. The operation of break and continue are similar to
the corresponding statements in C.

The for command returns an empty string.

The break command has the following syntax:

break ?value?

Updated for fossil version 1.25 Page 92 of 107

d

Fossil Version Control Fossil SCM

The break command returns immediately from the current procedure (or top-level command), with
value as the return value and TH_BREAK as the result code. If value is not specified, the string
“break” will be returned as result.

The continue command has the following syntax:
continue ?value?

The continue command returns immediately from the current procedure (or top-level command),
with value as the return value and TH_CONTINUE as the result code. If value is not specified, the
string “continue” will be returned as result.

The error command has the following syntax:
error ?value?

The error command returns immediately from the current procedure (or top-level command), with
value as the return value and TH_ERROR as the result code. If value is not specified, the string
“error” will be returned as result.

The catch command has the following syntax:
catch script ?varname?

The catch command may be used to prevent errors from aborting command interpretation. The
catch command calls the TH interpreter recursively to execute script, and always returns a TH_OK
code, regardless of any errors that might occur while executing script.

The return value from catch is a decimal string giving the code returned by the TH interpreter after
executing script. This will be ‘0’ (TH_OK) if there were no errors in command; otherwise it will
have a non-zero value corresponding to one of the exceptional result codes. If the varname argument
is given, then it gives the name of a variable; catch sets the value of the variable to the string returned
from running script (either a result or an error message).

6.6.5. Creating user defined commands

The proc command creates a new command. The syntax for the proc command is:
proc name args body

The proc command creates a new TH command procedure, name, replacing any existing command
there may have been by that name. Whenever the new command is invoked, the contents of body
will be executed by the TH interpreter.

The parameter args specifies the formal arguments to the procedure. It consists of a list, possibly
empty, each of whose elements specifies one argument. Each argument specifier is also a list with
either one or two fields. If there is only a single field in the specifier, then it is the name of the
argument; if there are two fields, then the first is the argument name and the second is its default
value. Curly brackets and backslashes may be used in the usual way to specify complex default
values.

The proc command returns the null string.

Updated for fossil version 1.25 Page 93 of 107

d

Fossil Version Control Fossil SCM

6.6.6. Execution of user defined commands

If a command is a user defined command (i.e. a command created with the proc command), then
the TH interpreter creates a new local variable context, binds the formal arguments to their actual
values (i.e. TH uses call by value exclusively) and loads the body script. Execution then proceeds
with the first command in that script. Execution ends when the last command has been executed or
when one of the returning commands is executed. When the script ends, the local variable context
is deleted and processing continues with the next command after the user defined command.

More in detail, when a user defined command is invoked, a local variable is created for each of the
formal arguments to the procedure; its value is the value of corresponding argument in the invoking
command or the argument’s default value. Arguments with default values need not be specified in a
procedure invocation. However, there must be enough actual arguments for all the formal arguments
that don’t have defaults, and there must not be any extra actual arguments.

There is one special case to permit procedures with variable numbers of arguments. If the last formal
argument has the name args, then a call to the procedure may contain more actual arguments than
the procedure has formals. In this case, all of the actual arguments starting at the one that would
be assigned to args are combined into a list (as if the list command had been used); this combined
value is assigned to the local variable args.

When body is being executed, variable names normally refer to local variables, which are created
automatically when referenced and deleted when the procedure returns. One local variable is auto-
matically created for each of the procedure’s arguments. Global variables can be accessed by using
the :: syntax.

When a procedure is invoked, the procedure’s return value is the value specified in a return com-
mand. If the procedure doesn’t execute an explicit return, then its return value is the value of the
last command executed in the procedure’s body. If an error occurs while executing the procedure
body, then the procedure as a whole will return that same error.

The syntax for the return command is:
return ?-code code? ?value?

The optional argument pair —code code allows to change the return status code from the default of
TH_OK to another status code. This code has to be specified with its numeric value.

6.6.7. Special commands

TH includes three core commands that assist with working with commands. They are:

breakpoint args
rename oldcmd newcmd
uplevel ?level? script

The breakpoint command does nothing. It is used as placeholder to place breakpoints during
debugging.

Updated for fossil version 1.25 Page 94 of 107

d

Fossil Version Control Fossil SCM

The rename command renames a user defined or a built-in command. The old name is removed
and the new name is inserted in the interpreter’s command table.

The uplevel command executes a command in the variable scope of a command higher up in the
call chain. The script argument is evaluated in the variable scope indicated by level. The uplevel
command returns the result of that evaluation. If level is an integer, then it gives a distance (up the
procedure calling stack) to move before executing the command. If level is omitted then it defaults
to ‘1.

For example, suppose that procedure a was invoked from top-level, and that it called b, and that b
called c. Suppose that ¢ invokes the uplevel command. If level is ‘1’ or omitted, then the command
will be executed in the variable context of b. If level is ‘2’ then the command will be executed in the
variable context of a. If level is ‘3’ then the command will be executed at top-level (i.e. only global
variables will be visible).

The uplevel command causes the invoking procedure to disappear from the procedure calling stack
while the command is being executed. In the above example, suppose ¢ invokes the command

uplevel 1 {set x 43; d}

where d is another TH procedure. The set command will modify the variable x in the context of b,
and d will execute at level 3, as if called from b. If it in turn executes the command

uplevel {set x 42}

then the set command will modify the same variable x in the context of b context: the procedure ¢
does not appear to be on the call stack when d is executing.

6.7. working with strings

TH provides the string command to facilitate working with strings. The string command is a single
command with seven subcommands, identified by the first argument. The first argument serves no
purpose other than to identify the subcommand. If the first argument does not match a subcommand,
an error is thrown.

The seven string subcommands are:

string length string

string compare stringl string2

string first needle haystack ?startindex?
string last needle haystack ?startindex?
string range string first last

string repeat string count

string is alnum string

The string length subcommand takes one parameter, which is a string. It returns the decimal string
with the length of the string. As TH uses a single byte character encoding the string size is both the
size in characters and in bytes.

Updated for fossil version 1.25 Page 95 of 107

d

Fossil Version Control Fossil SCM

The string compare subcommand performs a character-by-character comparison of argument
strings string1 and string2 in the same way as the C strcmp procedure. It returns a decimal string
with value -1, 0, or 1, depending on whether stringl is lexicographically less than, equal to, or
greater than string?2.

The string first subcommand searches argument haystack for a sequence of characters that exactly
match the characters in argument needle. If found, it returns a decimal string with the index of the
first character in the first such match within haystack. If not found, it returns return -1. The optional
integer argument startindex specifies the position where the search begins; the default value is 0, i.e.
the first character in haystack.

The string last subcommand searches argument haystack for a sequence of characters that exactly
match the characters in argument needle. If found, it returns a decimal string with the index of the
first character in the last such match within haystack. If not found, it returns return -1. The optional
integer argument startindex specifies the position where the search begins; the default value is 0, i.e.
the first character in haystack.

The string range subcommand returns a range of consecutive characters from argument string,
starting with the character whose index is first and ending with the character whose index is last. An
index of zero refers to the first character of the string. last may be end to refer to the last character
of the string. If first is less than zero then it is treated as if it was zero, and if last is greater than or
equal to the length of the string then it is treated as if it were end. If first is greater than last then an
empty string is returned.

The string repeat subcommand returns a string that is formed by repeating the argument string
for count times. The argument count must be an integer. If count is zero or less the empty string is
returned.

The string is alnum subcommand tests whether the argument string is an alphanumeric string, i.e.
a string with only alphanumeric characters. It returns a decimal string with value 1 if the string is
alphanumeric, and with value 0 it is not.

6.8. working with lists

The list is the basic TH data structure. A list is simply an ordered collection of items, numbers,
words, strings, or other lists. For instance, the following string is a list with four items. The third
item is a sub-list with two items:

{first second {a b} fourth}
TH has three core commands to work with lists:

list ?argl ?2arg2? ...?
lindex list index
llength list

The list command returns a list comprising all the args. Braces and backslashes get added as
necessary, so that the lindex command may be used on the result to re-extract the original arguments.
For example, the command

Updated for fossil version 1.25 Page 96 of 107

d

Fossil Version Control Fossil SCM

list a b {c d e} {f {g h}}
will return
ab {cde} {f {gh}}

The lindex command treats argument list as a TH list and returns the element with index number
index from it. The argument index must be an integer number and zero refers to the first element of
the list. In extracting the element, the lindex command observes the same rules concerning braces
and quotes and backslashes as the TH command interpreter; however, variable substitution and
command substitution do not occur. If index is negative or greater than or equal to the number of
elements in value, an empty string is returned.

The llength command treats argument list as a list and returns a decimal string giving the number
of elements in it.

Updated for fossil version 1.25 Page 97 of 107

7. What’s next ?

This book so far has covered how to use the many features of Fossil and has, I hope, interested
you in using it. The question "what’s next" now comes up. First go to the Fossil website http:
//www.fossil-scm.org/. While there you can go to the Wiki link and then list all Wiki
pages. There are all sorts of topics covered there in depth. If that still doesn’t help, you can join the
Fossil mailing list (see Wiki links) and look at the archives or directly ask a question. I have found
the list to be very helpful and have had my questions asked very quickly.

On the mailing lists you will see long discussions of changes to be made to Fossil, some of these are
accepted very quickly and will appear within hours in the Fossil source code. Others engender long
discussions (in particular discussion of changes to the Wiki) and it is interesting to read the pros and
cons of suggested changes.

Fossil is an evolving program but if you get a version that has all the features you need you can stick
with that version as long as you like. Going to a new version though is simple and just requires a
rebuild of your current repositories. The developers have been very careful to preserve the basic
structure so it is easy and safe to switch versions.

Finally if you wish to contribute to the project there are many things to do (See the To Do List in
the Wiki).

99

http://www.fossil-scm.org/
http://www.fossil-scm.org/

List of Figures

2.1. Create Repository o i e
2.2. OpenRepository & Check
2.3. Imitialfileadd
24, Inmitial Commit. L e
2.5. Starting Webservero L oL
2.6. Initial webserver page e e e e
2.7. Initial Configuration. Lo
2.8. User Configuration v i it e
29. SuperUserSetup e
2.10. Project Status e e
2.11. Update fornew files L
202, Timeline oL e
2.13. Timeline Detail
2.14. Initial Ticket Window
2.15. Ticket Form
2.16. ViewingaTicket L
2.17. Ticket List withopenticket
2.18. Ticket resolving check-in L oo
2.19. Ticket Finish
2.20. Blank Home Page
221. Wikicontrols
2.22. Wiki Formating L
2.23. Home page withedit
224, Initial Home page 0 e e

3.1. Self-hosted Fossil repository
3.2, Fossil CGIscript o oo e
3.3. MyPFossil CGIscript e
3.4. Copyingscriptintoplace L L
3.5. Web access to Fossil CGlL hosted site
3.6. NewEditoruser e
37. Clonecommand it
3.8. Cloned repository checkin L oL
3.9, Updateaction e e e e
3.10. Updated Timeline e
3.11. Forking commit
3.2, Updatedry run L. e e e e e e e

Nelie e RN BN e o)

11
11
12
13
14
15
16
16
17
18
19
20
20
21
22

25
26
27
27
27
29
30
31
32
32
33
33

101

Fossil Version Control Fossil SCM
3.13. Update dry run, shorter 34
3.14. Current Timeline e 35
3.15. Update fossilbook.pdf 35
3.16. Forcing a commit under Windows L. 36
3.17. Windows Forked timeline 36
3.18. Fossil Merge e e e 36
3.19. Text differences 37
3.20. Merged timeline L 37
4.1. Marilyn’swork e 40
4.2, Jim’scommitattempt oL e e 40
4.3. Forcingthe commit Lo 41
4.4, Repository Fork e 41
4.5. Merge Operation e e e e e e e 42
4.6. Commitafter merge e e 42
477. Aftermerge timeline Lo 43
48. Marilyn’sUpdate 43
4.9. Jim’scheckinattempt 44
4.10. Updatedryrun L e e 45
4.11. Merged repositoryo e e e e e e e e 45
4.12. Checking code status e e e e 46
4.13. Branchcommands Lo 47
4.14. Branch Timeline 47
4.15. Setting Timeline color L o 48
4.16. Checkout VER_1.0 49
4.17. VER _2.0checkout 50
4.18. Fixing both branches 51
4.19. Correcting bothbranches 52
5. Helprun o .. e e 53
52. Helpdetail e 54
5.3. adddetail 54
54, rmdetail L 55
5.5. renamedetail 55
5.7. changesdetails 56
5.6 StAtUSTUN L o b b e e e e e e e e e e e 56
5.8. extradetails 56
59. revertdetails L 57
S5.10.updatedetails L 58
S5.11.checkoutorcodetails L Lo 58
SA2.undodetails L. 59
SA3.diffdetailso 59
5.4, gdiff details 60
SAS.uidetailso 60
S.ad6.serverdetail Lo 61

Updated for fossil version 1.25 Page 102 of 107

Fossil Version Control Fossil SCM
5.17.commitdetails 61
58 newdetails L L e 62
5.19.clonedetails e 63
520.0pendetails 63
521.closedetails e 64
522.versiondetails L 64
5.23. rebuilddetails e 64
524, alldetails e 65
5.25.pushdetails 65
S526.pulldetails 66
527.syncdetails L e 66
5.28.cleandetails 67
5.29.branchdetails e 67
5.30. mergedetails L 68
S3l.tagdetails L 69
5.32.settingsdetails L. L L e e 70
S533.zipdetail 71
534.userdetail L e e 71
535.finfodetail 72
5.36.timelinedetail e 73
537.wikidetail e 74
538.scrubdetail 75
539.searchdetail 75
5.40.shalsumdetail 75
541. rstatsdetail L L L L e e 76
5.42. configurationdetail L 77
5.43.descendantsdetail 77

Updated for fossil version 1.25 Page 103 of 107

Bibliography

[1] D. Crockford. The application/json media type for javascript object notation. Request for
Comments 4627, Network Working Group, July 2006.

[2] Mattias Ettrich. Lyx - the document processor.

[3] Dick Grune. Concurrent versions system, a method for independent cooperation. unpublished,
1986.

[4] D. Richard Hipp. Fossil home page.
[5] University of Texas. How we use sccs.

[6] Marc J Rochkind. The source control system. [EEE Transactions on Software Engineering,
SE-1(4):364, December 1975.

105

A. Document Revision History

Use the following table to track a history of this documents revisions. An entry should be made into
this table for each version of the document.

Version | Author | Description Date
0.1 Js Initial Version 24-Apr-2010
0.2 Js Finishing up Single User Chapter 27-Apr-2010
0.3 Js Working on introduction chapter 30-Apr-2010
0.4 js Adding multiuser chapter 1-May-2010
0.5 mn Adding editorial corrections [ebf40b842a] 4-May-2010
0.6 js Adding Command sections [e11399d575] 8-May-2010
0.7 js English & spelling corrections 19-May-2010
0.8 Js Spelling fixes 30-May-2010
0.9 WS Using Fossil merge [db6c734300] 2-Jun-2010
1.0 js/ws | Put Fossil merge first in handling fork 3-Jun-2010
1.1 mn Fixes in multiple user chapter [e8770d3172] 4-Jun-2010
1.2 js Start advanced use chapter [2abc23dae5] 4-Jun-2010
1.3 mn English corrections Chapter 1 [8b324dc900] 5-Jun-2010
1.4 mn Sections 2.1 & 2.2 corrections [0b34cb6f04] 7-Jun-2010
1.5 js Move close leaf to adv use [2abc23dae5] 7-Jun-2010
1.6 Js Convert Advanced chapter to forks and branching 13-Jun-2010
1.7 jsitr Add note about IP port usage [a62efa8eba] 8-Jul-2010
1.71 javelin | Check on mispelling section 1.1 [637d974{62] 15-Sep-2011
1.72 anon | Fix absolute path in image regs [d54868853b] 15-Sep-2011
1.73 anon Fix fossil create section 2.2.5 [36772d90a5] 15-Sep-2011
1.74 anon Push/Pull described incorrectly [1b930fced6] 15-Sep-2011
1.75 arnel Commands might be changed [4aaf1f78bb] 15-Sep-2011
2.0 FvD Updated and matched to fossil 1.25 March 2013

107

	1 Source Control & Why you need it
	1.1 What is Source Control?
	1.2 Why version the files in your project?
	1.2.1 How to get it

	1.3 Source control description
	1.3.1 Check out systems
	1.3.2 Merge systems
	1.3.3 Distributed systems
	1.3.4 Common Terms

	2 Single Users
	2.1 Introduction
	2.2 Creating a repository
	2.2.1 Introduction
	2.2.2 Create Repository
	2.2.3 Connect Repository
	2.2.4 Add and Initial Commit
	2.2.5 Fossil start up summary

	2.3 Set Up User interface
	2.3.1 User interface summary

	2.4 Update Repository
	2.4.1 Update Summary

	2.5 Tickets
	2.5.1 Ticket Summary

	2.6 Wiki Use
	2.6.1 Wiki Summary

	3 Multiple Users
	3.1 Introduction
	3.2 Setup
	3.2.1 Server Setup
	3.2.1.0.1 Self hosted
	3.2.1.0.2 Server hosted
	3.2.1.0.3 CGI Script for hosted server

	3.2.2 The test (either self hosted or server hosted)

	3.3 User Accounts
	3.4 Multiple User Operation
	3.4.1 Cloning
	3.4.2 Keeping in sync
	3.4.3 Complications
	3.4.4 Fixing the Update file
	3.4.5 Fixing the Merge file

	4 Forks & Branches
	4.1 Introduction
	4.2 Forks, Branch & Merge
	4.2.1 Marilyn's Actions
	4.2.2 Jim's Actions
	4.2.3 Fixing the fork
	4.2.4 Commands used

	4.3 Merge without fork
	4.3.1 Check in attempt
	4.3.2 Update
	4.3.3 Commands used

	4.4 Branching
	4.4.1 Introduction
	4.4.2 Branch the repository
	4.4.3 Color Setup
	4.4.4 Check out the branches
	4.4.5 Correcting errors (in both)
	4.4.6 Commands used

	5 Fossil Commands
	5.1 Introduction
	5.2 Basic Commands
	5.2.1 help
	5.2.2 add
	5.2.3 rm or del
	5.2.4 rename or mv
	5.2.5 status
	5.2.6 changes
	5.2.7 extra
	5.2.8 revert
	5.2.9 update
	5.2.10 checkout or co
	5.2.11 undo
	5.2.12 diff
	5.2.13 gdiff
	5.2.14 ui
	5.2.15 server
	5.2.16 commit or ci

	5.3 Maintenance commands
	5.3.1 new
	5.3.2 clone
	5.3.3 open
	5.3.4 close
	5.3.5 version
	5.3.6 rebuild
	5.3.7 all
	5.3.8 push
	5.3.9 pull
	5.3.10 sync
	5.3.11 clean
	5.3.12 branch
	5.3.13 merge
	5.3.14 tag
	5.3.15 settings

	5.4 Miscellaneous
	5.4.1 zip
	5.4.2 user
	5.4.3 finfo
	5.4.4 timeline
	5.4.5 wiki

	5.5 Advanced
	5.5.1 scrub
	5.5.2 search
	5.5.3 sha1sum
	5.5.4 rstats
	5.5.5 configuration
	5.5.6 descendants

	6 Fossil Customization - the TH Scripting language
	6.1 Introduction to TH
	6.1.1 TH is a Tcl-like language

	6.2 The “Hello, world” program
	6.3 TH structure and syntax
	6.3.1 Datatypes
	6.3.2 Lists
	6.3.3 Commands
	6.3.4 Grouping & substitution
	6.3.4.1 Argument grouping
	6.3.4.2 Value substitutions
	6.3.4.3 Backslash escape substitution.
	6.3.4.4 Variable substitution
	6.3.4.5 Command Substitution
	6.3.4.6 Argument grouping revisited

	6.3.5 Summary
	6.3.5.1 Caveats

	6.4 TH expressions
	6.5 TH variables
	6.5.1 Working with variables
	6.5.1.1 Scalar variables and array variables
	6.5.1.2 Variable scope

	6.6 TH commands, scripts and program flow
	6.6.1 Commands revisited
	6.6.2 Scripts
	6.6.3 Command result codes
	6.6.4 Flow control commands
	6.6.5 Creating user defined commands
	6.6.6 Execution of user defined commands
	6.6.7 Special commands

	6.7 working with strings
	6.8 working with lists

	7 What's next ?
	A Document Revision History

