
Fossil Version Control
A User Guide

Jim Schimpf, Chris X., Torsten Berg and others

15 April 2024

ii

Foreword

This book was started in 2010 using a Dual processor Mac 550 MHz PowerPC
running Mac OSX 10.5. Current revisions are now done on MacBook Pro (Intel)
running MacOS 10.12.1 at 2.5GHz. It was originally done using Fossil version
1.27 and now revisions to the book are using Fossil 1.36. Because of this some
of the pictures here will look slightly different in your copy of Fossil but the
maintainers have been careful to update the esthetics but not the functions of the
various pages. So you will see different, better looking pages but the functions
will be the same.

In November 2020, Fossil was up to version 2.14 and there have been extensive
changes to the command set, so documentation is longer but follows the same
pattern as in earlier versions. Edits now being done on Debian Linux x64
running on an Intel J1900 cpu at 2GHz with 4 processors and 4 GB RAM. Could
be done on a Raspberry Pi or Chromebook.

Now, in April 2024, Fossil is at version 2.23 and the book is being continued
and slowly updated on a MacBook Pro and a Mac mini from 2015 and 2020,
respectively.

Contents

Foreword . ii

1 Why source control 1
1.1 What is source control? . 1
1.2 Why version the files? . 2

1.2.1 How to get it . 3
1.3 Source control description . 3

1.3.1 Check out systems . 3
1.3.2 Merge systems . 3
1.3.3 Distributed systems . 4
1.3.4 Common terms . 4

2 Single user 5
2.1 Introduction . 5
2.2 Using the Fossil command line application 5
2.3 Creating a repository . 6

2.3.1 Introduction . 6
2.3.2 Create repository . 6
2.3.3 Connect repository . 7
2.3.4 Add and initial commit 8
2.3.5 Fossil start up summary 9

2.4 Set up user interface . 9
2.4.1 User interface summary 11

2.5 Update repository . 11
2.5.1 Update summary . 12

2.6 Tickets . 13
2.6.1 Ticket summary . 14

2.7 Wiki . 14
2.7.1 Wiki formatting . 16
2.7.2 Wiki summary . 16

3 Multiple users 19
3.1 Introduction . 19
3.2 Setup . 19

iii

iv CONTENTS

3.2.1 Remote server . 19
3.2.2 Local server . 21
3.2.3 Test the setup . 22

3.3 User accounts . 22
3.4 Multiple user operation . 22

3.4.1 Cloning . 22
3.4.2 Keeping the code in sync 23
3.4.3 Complications . 24
3.4.4 Fixing the update file . 25
3.4.5 Fixing the merge file . 26
3.4.6 More on merge conflicts 27

3.5 Sharing other changes than code 28
3.5.1 Sharable content . 28
3.5.2 Synchronize the Fossil configuration 28

4 Forks and branches 31
4.1 Introduction . 31
4.2 Forks, branch and merge . 31

4.2.1 Marilyn’s actions . 32
4.2.2 Jim’s actions . 32
4.2.3 Fixing the fork . 32
4.2.4 Commands used . 33

4.3 Merge without fork . 33
4.3.1 Check-in attempt . 34
4.3.2 Update . 34
4.3.3 Commands used . 34

4.4 Branching . 34
4.4.1 Introduction . 34
4.4.2 Branch the repository . 35
4.4.3 Color setup . 36
4.4.4 Check out the branches 36
4.4.5 Correcting errors in both 36
4.4.6 Private branches . 37
4.4.7 Cherrypicking . 37
4.4.8 Commands used . 38

5 The Fossil user interface 39
5.1 fossil ui . 39
5.2 Home . 39
5.3 The timeline . 39

5.3.1 Check-ins . 39
5.4 File . 40

5.4.1 The timeline of a single file 40
5.5 Branches . 40
5.6 Tags . 40
5.7 Tickets . 40

CONTENTS v

5.8 Wiki . 40
5.9 Admin . 40
5.10 Login . 40

6 Fossil’s markup languages 41
6.1 Plain text . 42
6.2 HTML . 42
6.3 Wiki markup . 42
6.4 Markdown . 43

6.4.1 Paragraphs . 44
6.4.2 Headings . 44
6.4.3 Links . 44
6.4.4 Font styling . 44
6.4.5 Lists . 44
6.4.6 Block quotes . 44
6.4.7 Literal/verbatim text . 44
6.4.8 Code blocks . 44
6.4.9 Tables . 44
6.4.10 HTML . 44

6.5 Links only . 44

7 Fossil configuration 45
7.1 Ticket configuration . 45

7.1.1 The structure of tickets . 45
7.1.2 How tickets are displayed in the UI 47
7.1.3 What can be customized 47

7.2 Menu configuration . 47
7.3 Users configuration . 47
7.4 Skins configuration . 47
7.5 Configure email notifications . 47
7.6 Configure times and dates . 48

8 Fossil commands 49
8.1 Introduction . 49
8.2 Basic . 51

8.2.1 help . 51
8.2.2 add . 52
8.2.3 rm or del . 54
8.2.4 rename or mv . 55
8.2.5 status . 56
8.2.6 changes . 56
8.2.7 extras . 58
8.2.8 revert . 60
8.2.9 update . 60
8.2.10 check-out or co . 62
8.2.11 undo . 63

vi CONTENTS

8.2.12 diff . 64
8.2.13 gdiff . 66
8.2.14 ui . 67
8.2.15 server . 69
8.2.16 commit or ci . 71

8.3 Maintenance . 73
8.3.1 new . 73
8.3.2 clone . 74
8.3.3 open . 76
8.3.4 close . 77
8.3.5 version . 78
8.3.6 rebuild . 78
8.3.7 repack . 79
8.3.8 all . 79
8.3.9 push . 81
8.3.10 pull . 82
8.3.11 sync . 83
8.3.12 clean . 84
8.3.13 branch . 86
8.3.14 merge . 87
8.3.15 tag . 88
8.3.16 settings . 90
8.3.17 info . 91
8.3.18 publish . 91

8.4 Miscellaneous . 91
8.4.1 zip . 92
8.4.2 user . 92
8.4.3 finfo . 93
8.4.4 timeline . 95
8.4.5 wiki . 96

8.5 Advanced . 98
8.5.1 uv . 98
8.5.2 scrub . 98
8.5.3 search . 99
8.5.4 sha3sum . 100
8.5.5 configuration . 100
8.5.6 descendants . 101

9 Pikchr 103

10 TH1 Scripting language 105
10.1 Introduction to TH1 . 106

10.1.1 TH1 is a Tcl-like language 106
10.2 The Hello world program . 106
10.3 TH1 structure and syntax . 107

10.3.1 Datatypes . 107

CONTENTS vii

10.3.2 Lists . 107
10.3.3 Commands . 108
10.3.4 Grouping & substitution 108
10.3.5 Argument grouping . 108
10.3.6 Value substitutions . 109
10.3.7 Backslash escape substitution 109
10.3.8 Variable substitution . 109
10.3.9 Command substitution 110
10.3.10 Argument grouping revisited 111
10.3.11 Summary . 112
10.3.12 Caveats . 113

10.4 TH1 expressions . 113
10.5 TH1 variables . 115

10.5.1 Working with variables 115
10.5.2 Scalar variables and array variables 116
10.5.3 Variable scope . 116

10.6 TH1 commands, scripts and program flow 117
10.6.1 Commands revisited . 117
10.6.2 Scripts . 118
10.6.3 Command result codes . 118
10.6.4 Flow control commands 119
10.6.5 Creating user defined commands 121
10.6.6 Execution of user defined commands 121
10.6.7 Special commands . 122

10.7 Working with strings . 123
10.8 Working with lists . 124

11 Chiselapp 127
11.1 Create an account . 127
11.2 Repositories . 127

11.2.1 Create Repository . 128
11.2.2 Moving data . 128

11.3 Fixing Data . 128
11.4 Final Fixes . 128
11.5 Syncing . 129
11.6 Final Result . 129

12 Advanced uses 131
12.1 Additional tables in the repository 131

13 What’s next ? 133
13.1 Learning more . 133
13.2 Contributing . 133

14 Fossil versions 135
14.1 Changes for version 2.23 (2023-11-01) 135

viii CONTENTS

14.2 Changes for version 2.22 (2023-05-31) 136
14.3 Changes for version 2.21 (2023-02-25) 137
14.4 Changes for version 2.20 (2022-11-16) 138
14.5 Changes for version 2.19 (2022-07-21) 138
14.6 Changes for version 2.18 (2022-02-23) 139
14.7 Changes for version 2.17 (2021-10-09) 140

15 Revision history 143

Chapter 1

Why source control

1.1 What is source control?

A source control system is software that manages the files in a project. A project
(typically a software application, but also this book) usually has a number of
files. These files in turn are managed by organizing them in directories and
sub-directories. At any particular time this set of files in their present edited
state make up a working copy of the project at the latest version. If other people
are working on the same project you would give them your current working
copy to start with. As they find and fix problems, their working copy will
become different from the one that you have (it will be in a different state or
version). For you to be able to continue where they left off, you will need
some mechanism to update your working copy of the files to the latest version
available in the team. As soon as you have updated your files, this new version
of the project goes through the same cycle again. Most likely the current version
will be identified with a code, this is why software has versions and books have
editions.

Software developers on large projects with multiple developers could see this
cycle and realized they needed a tool to control the changes. With multiple
developers sometimes the same file would be edited by two different people
changing it in different ways and records of what got changed would be lost.
It was hard to bring out a new release of the software and be sure that all the
work of all team members to fix bugs and write enhancements were included.

A tool called Source Code Control System (SCCS) was developed at Bell Labs
in 1972 to track changes in files. It would remember each of the changes made
to a file and store comments about why this was done. It also limited who could
edit the file so conflicting edits would not be done.

This was important but developers could see more was needed. They needed

1

2 CHAPTER 1. WHY SOURCE CONTROL

to be able to save the state of all the files in a project and give it a name (i.e.,
Release 3.14). As software projects mature you will have a released version of
the software being used as well as bug reports written against it, while the next
release of the software is being developed adding new features. The source
control system would have to handle what are now called branches. One branch
name for example “Version 1” is released but continues to have fixes added
to create Version 1.1, 1.2, etc. At the same time you also have another branch
which named “Version 2” with new features added under construction.

In 1986 the open source Concurrent Version Control System (CVS) was de-
veloped. This system could label groups of files and allow multiple branches
(i.e. versions) simultaneously. There have been many other systems developed
since then, some open source and some proprietary.

Fossil, which was originally released in 2006, is an easy to install version control
system that also includes a ticketing system (see section 2.6), a Wiki (see section
2.7) and self hosted web server (see section 3.2.1).

1.2 Why version the files?

Why do you want to use a source control system? You won’t be able to create
files, delete files, or move files between directories at random. Making changes
in your code becomes a check list of steps that must be followed carefully.

With all those hassles, why do it? One of the most horrible feelings as a devel-
oper is the “It worked yesterday” syndrome. That is, you had code that worked
just fine and now it doesn’t. If you work on only one document, it is conceivable
that you saved a copy under a different name (perhaps with a date) that you
could go back to. But if you did not, you doubtless feel helpless at your inability
to get back to working code. With a source control system and careful adherence
to procedures you can just go back in time and get yesterday’s code, or the code
from one hour ago, or from last month. After you have done this, starting from
known good code, you can figure out what happened.

Having a source control system also gives you the freedom to experiment, “let’s
try that radical new technique”, and if it doesn’t work then it’s easy to go back
to the previous state.

The rest of this book is a user manual for the Fossil version control system that
does code management and much much more. It runs on multiple OS’s and is
free and open source software (FOSS). It is simple to install as it has only one
executable and the repositories it creates are a single file that is easy to back up
and are usually only 50 % the size of the original source.

https://www.fossil-scm.org

1.3. SOURCE CONTROL DESCRIPTION 3

1.2.1 How to get it

If this has interested you then you can get a copy of the Fossil executable
here: www.fossil-scm.org/download.html. There are links to Linux, Mac, and
Windows executable on this page. The source code is also available if you want
or need to compile it yourself. This web site, containing the content you are
reading, is self-hosted by Fossil.

1.3 Source control description

This next section is useful if you have not used source control systems before. I
will define some of the vocabulary and explain the basic ideas of source control.

1.3.1 Check out systems

When describing the older source control systems, like SCCS, I said it managed
the changes for a single file and also prevented multiple people from working
on the same file at the same time. This is representative of a whole class of
source control systems. In these you have the idea of “checking-out” a file so
you can edit it, while becoming the current “owner”. At the same time, while
other people using the system can see who is working on the file, they are
prevented from touching it. They can get a read-only copy so they can say
build software but only the “owner” can edit it. When done editing the “owner”
checks it back in, after which anyone else could work on on it. At the same time
the system has recorded who had it and the changes made to it.

This system works well in small groups with real time communication. A
common problem is that a file is checked out by some one else and you have to
make a change in it. In a small group setting, just a shout over the cube wall
will solve the problem.

1.3.2 Merge systems

In systems represented by CVS or Subversion the barrier is not getting a file to
work on but putting it back under version control. In these systems you pull
the source code files to a working directory in your area. Then you edit these
files, making necessary changes. When done you commit or check them back
into the repository. At this point they are back under version control and the
system knows the changes from the last version to this version.

This gets around the problem mentioned above when others are blocked from
working on a file. You now have the opposite problem in that more than one
person can edit the same file and make changes. This is handled by the check-in
process. There only one person at a time may check in a file. That being the case,
the system checks the file and if there are changes in the repository file that are
not in the one to be checked in the check in process stops. The system will ask if

https://www.fossil-scm.org/download.html

4 CHAPTER 1. WHY SOURCE CONTROL

the user wants to merge these changes into his copy, after correcting manually
for areas of overlapping change. Once that is done the new version of the file
can be checked in.

This type of system is used on large projects like the Linux kernel or other sys-
tems where you have a large number of geographically distributed contributors.

1.3.3 Distributed systems

The representatives of two major systems we have described thus far are cen-
tralized. That is there is only one repository on a single server. When you get a
copy of the files or check in files, it all goes to just one place. These work and can
support many, many users. A distributed system is an extension of this where
it allows the repositories to be duplicated and has mechanisms to synchronize
them.

With a single server, users of the repository must be able to connect to it to
get updates and to check in new code. If you are not connected to the server
you are stuck and cannot continue working. Distributed systems allow you
to have your own copy of the repository to continue working and, when back
in communication, to synchronize with the server. This is very useful where
people take their work home and cannot access the company network. Each
person can have a copy of the repository, continue working, and re-sync upon
return to the office.

1.3.4 Common terms

The following is a list of terms I will use when talking about version control or
Fossil.

Repository This is the store where the version controlled files are kept. It will
be managed by a source control system.

Source control system This is software that manages a group of files by keep-
ing track of changes and allowing multiple users to modify them in a
controlled fashion.

Commit in Fossil Store the current set of new and changed files into the repos-
itory.

Trunk The main line of code descent in a Fossil repository.
Branch A user defined split in the files served by an SCS. This allow multiple

work points on the same repository. Older branches (versions) might have
bug fixes applied and newer branches (versions) can have new features
added.

Fork In Fossil, an involuntary split in the code path occurs when a file in the
repository has changes not in a file to be committed.

Chapter 2

Single user

2.1 Introduction

If you have read this far and are at least persuaded to try, you will want to put
one of your projects under software control using Fossil. This chapter is set up
to lead you through that task and show you how to adapt your development to
using this tool. The assumption is made in this section that you will be the only
person using the repository, you are the designer, developer, and maintainer of
this project. After you are comfortable using the tool, the next section will show
how you use it when you have multiple people working on a project.

2.2 Using the Fossil command line application

Fossil is a command line application. This means, it must be started from a
command line interface, typically called a “Terminal” or “Console”. However,
this does not mean that Fossil has no GUI. Read on in the section 2.4 to see how
the GU is launched. The fossil command has many subcommands. You can
get a list of them with

\ \$ fossil help \# if you want a list of all commands and not only the
most frequently used: \$ fossil help -a

There is a bunch of options that are supported for all Fossil commands. You can
see these options with

5

6 CHAPTER 2. SINGLE USER

\ \$ fossil help -o

Try calling fossil help help to see what else is possible with the “help”
command!

2.3 Creating a repository

2.3.1 Introduction

In the spirit of “eating one’s own dog food” we will use this book as the project
we are going to manage with Fossil. The book is a directory of Markdown text
files and the current working area looks like this, i.e. these are the files I already
created:

fossilbook3
- content

- book.md
- image

- book
- fossil.png

- index.md
- introduction.md

- makefile
- outline.txt
- pandoc

- metadata-general.yaml

It took just an hour or so to start preliminary research and build the framework.
Since that’s about all I’m going to do today I want to build a repository and put
all these files under Fossil control.

2.3.2 Create repository

I have a directory called FOSSIL in which I keep all my repositories, Fossil
doesn’t care but it helps me to keep them all in one place so I can back them
up. First I need to create a new repository for the book. This is done using the
command line after I move into the Fossil book directory called fossilbook3.
(Here I have the fossilbook3 directory side by side with the FOSSIL direc-
tory).

2.3. CREATING A REPOSITORY 7

\ \$ cd fossilbook3 \$ fossil new ../FOSSIL/FossilBook.fossil

I create my repositories with the extension .fossil, this will be useful later
with the server command (see section 3.2.1). When the repository is createed,
an initial password is assigned with an admin user of “jim” (the original writer
of this book).

2.3.3 Connect repository

The repository is created but is empty and has no connection to the
fossilbook3 directory. The next step is to open the repository to the
fossilbook3 directory with the open command.

\ \$ fossil open -force ../FOSSIL/fossilbook3.fossil

This will register a connection to the repository and do an initial check-out into
the current directory (which is fossilbook3 in my case).

ò
I checked the repository out into the current directory but this direc-
tory is not empty (it contains my initial directories with the working
files created above). If there are other files in the check-out directory
that Fossil doesn’t manage (the fossil file itself doesn’t count), the
command will abort with a message saying that the directory is not
empty. In this case, you need to use the --force (or -f) option as I
did above.

The open command seemingly did nothing, as if no files were created. However,
checking with the status command shows the repository, the directory it’s
linked to and that we are hooked to the trunk of the store.

8 CHAPTER 2. SINGLE USER

\ \$ fossil status

repository: /home/jim/FOSSIL/fossilbook3.fossil local-root:
/home/jim/fossilbook3/ config-db: /home/jim/.config/fossil.db checkout:
21e43f604387da163ea84f0d2f73cbaefff0f681 2020-11-23 18:46:21 UTC parent:
2baae1d5fb4865028ba9f4b104f8fed2f9b44094 2020-11-23 12:45:17 UTC tags:
trunk comment: initial empty check-in (user: jim)

The extra command shows all the files in the directory that I had originally
created and that are not (yet) under control of Fossil. In this case that’s all of
them since we have not checked in anything.

\ \$ fossil extra

content/introduction.md content/book.md content/ image/book/fossil.png
content/index.md content/introduction.md makefile outline.txt
pandoc/metadata-general.yaml

Note, the status message says initial empty check-in. So, Fossil pro-
vides us with some basis check-in that is empty. It is the root of your own later
check-ins. Note also, you can open the repository more than once. You just
need to do this in different working directories. For example, this can be used
to work on different branches (see section 4) at the same time.

2.3.4 Add and initial commit

I must now add all the relevant files into the repository with the add command.
The Fossil add is recursive so if I add the top level files it will automatically
recurse into the subdirectories and get those files too. Before you do an add it
pays to tidy up your directory so you don’t accidentally add a bunch of transient
files (like object files from a compile). It’s easy to remove them later but a little
tidying before hand can save you some work.

\ \$ fossil add .

2.4. SET UP USER INTERFACE 9

I simply told fossil to do an add of the current directory (.) so it got all those
files and all the files in the subdirectories. Note the file named _FOSSIL_ or
.fslckout (depending on your operating system) that wasn’t added to the
repository but is located among your working files on disk. This is the tag file
that fossil keeps in a directory so it knows what repository it belongs to. Fossil
won’t add this file since it manages it separately, but everything else is fair
game.

One final thing before I can quit for the day, these files have been added or
rather they will be added to the repository when I commit them. That must be
done and then we can relax and let Fossil manage things.

\ \$ fossil commit -m “Initial Commit”

I added a comment text to the commit (“Initial Commit”) and it’s a good idea to
always do this. When later we see the timeline of the commits you will have
notes to tell you what was done.

2.3.5 Fossil start up summary

fossil new <name> Creates a new fossil repository.
fossil open <repository> While in a source directory connects this directory to

the fossil repository.
fossil add . Will add (recursively) all the files in the current directory and all

subdirectories to the repository.
fossil commit -m “Initial Commit” Will put all the currently added files into

the repository.

2.4 Set up user interface

One of the surprising features of Fossil is the webserver. This allows it to have a
GUI type user interface with no operating system specific code, the GUI is the
web browser supplied by your OS. In the previous steps I checked in my project
to a Fossil repository, next I have to prepare the web interface for production
use.

10 CHAPTER 2. SINGLE USER

ò
The Fossil web server uses the first available port starting at 8080
instead of the standard port 80 for all HTTP access. When run it will
automatically start your Web browser and open the repository home
page.
Fossil automatically finds an open port and will give a message on
the command line telling you what port number is used. You can
still use the -port option if you want to control the port number.

\ \$ fossil ui

This command shows how it’s started. When I do this my browser starts if it is
not running already and I am presented with the following home page:

Note, that the fossil ui command only gives you this home page when you
are using it in a directory with an open check-out. The UI can not operate
without a repository (but you can ask it to show a specific repository when you
are not in a directory with an open check-out by supplying the file name of the
repository . . . and it doesn’t even have to be “open”).

Following the advice on the page I go to setup/config. I am going to do the
minimum setup that you should do on all projects. As you get familiar with
Fossil you will probably have many more things that you will customize for
your taste but what follows are the only things you have to do.

I have entered in a project name and put in a description, the project name will
be the name of the initial Wiki page (see section 2.7) and the description is useful
for others to see what you are doing here. Then I go to the bottom of the page
and pick the Apply Changes button.

Next I pick the Admin tab (you can see it in the header bar) and then pick
Users from that page. I am presented with the users and will use this to set the

2.5. UPDATE REPOSITORY 11

password of the project. See section 7 for details on what else you can customize
from the Admin page.

As you can see, Fossil automatically configures a number of users beyond just
the creator. The anonymous user you have already seen if you went to the
Fossil web site to download the code. This user can view and get code but
cannot commit code. On the right side of the page are the many options you
can give to a user, it’s worth reading it all when you set up your repository.
The important one is me (jim) which has “s” or “Super User Capabilities”. This
means I can do anything with the repository.

I will now edit the user “Jim” to make sure it has the settings I want. In this case
you must set the password. Remember way back where Fossil set it during the
creation of the repositroy (Figure[fig:Create-Repository]), it’s a very good idea
to change this to something you can remember rather than the original random
one.

I have put in my contact information (e-mail address) and while you cannot see
it I have typed in a password that I will remember. Then I applied the changes.

Now the repository is ready for further work, it’s rather bare bones at this point
but the most important things are set up.

2.4.1 User interface summary

fossil ui Run in the source directory will start a browser based user interface to
fossil.

fossil ui -port <IP port #> Can be used if port 8080 if already in use on your
system.

On the first run it is important to configure your project with a name and
set the password for yourself.

2.5 Update repository

After writing the above section of the book I now have created a some new files
and changed some of the existing files in the repository. Before quitting for the
day I should add these new files into the repository and commit the changes
saving this milestone in the project.

\ \$ fossil extra

https://fossil-scm.org

12 CHAPTER 2. SINGLE USER

I run fossil extra to see these new files. Choose the ones to add and note if
there are perhaps any temporary files that should not be stored in the repository.
I also ran fossil status. This shows changes to files that are already in
the repository. The only files changed are content/introduction.md and
content/single-user.md.

All I have to do now is add in the directory content/image which will add
in the image files I want in the repository. Then I commit the changes to the
repository and we can move on to other tasks of the day.

\ \$ fossil add content/image

After doing this commit I can bring up the Fossil ui (see section 3.2.1) and view
the project Timeline by picking that tab on the Fossil header. We get this:

Timeline placeholder

You can see all my check-ins thus far and you can see after the check-in from Fig-
ure [fig:Update-for-new] I did another check-in because I missed some changes
in the outline. The check-ins are labeled with the first 10 digits of their hash
value and these are active links which you can click to view in detail what was
changed in that version.

I clicked on the very last check-in (the LEAF) and the display is shown above.
There are many things you can do at this point. From the list of changed files
you can pick the diff link and it will show in text form the changes made in
that particular file. The Other Links section has a very useful ZIP Archive.
Clicking this will download a ZIP of this version to your browser. You will find
this useful if you want to get a particular version, in fact this is normally how
you get a new version of Fossil from https://fossil-scm.org/. The edit link will
be used later to modify a leaf.

2.5.1 Update summary

fossil status will tell you the updated files before you commit.
fossil extra will list files not in the repository.
fossil commit - m “Commit comment” Commits a change (or changes). It is

very important to have a descriptive comment on your commit.

https://fossil-scm.org/

2.6. TICKETS 13

2.6 Tickets

Besides managing your code Fossil has a trouble ticket system. This means you
can create a ticket for a problem or feature you are going to add to your system
then track your progress. Also you can tie the tickets to specific check-ins of
your files. For software this is very useful for bug fixes and feature additions.
For example you can look for a bug in the ticket list then have it take you to the
change that fixed the problem. Then you know exactly what you did and not
have to be confused by other changes you might have made.

When you click on Tickets in the menu it will bring up this window. You can
create a new ticket, look at the list, or generate a new report. Keeping things
simple I will just use the All Tickets list for now.

Initial Ticket Window placeholder

Picking New Ticket I get a form that I fill out like so:

Ticket Form placeholder

Pretty simple actually. You can put as much or as little detail in here as you
wish, but remember this stuff might be really vital six weeks or six months from
now so think of what you would want to know then.

Note, there is no Submit button now. I need to click on Preview in order to
check how the ticket will be formatted before I can submit (and there are four
different ways of formatting tickets). When everything is OK, I press Submit. I
get this showing what I entered.

Viewing a Ticket placeholder

Finally picking Tickets then All Tickets I can see my new ticket in the list
marked as “Open” and in a distinctive color.

Ticket List with open ticket placeholder

I try, in handling tickets, to have links from ticket to the commit that addressed
the problem and a link from the commit back to the offending ticket. This way
looking at the ticket I can get to the changes made and from the timeline I can
get to the ticket and its resolution. To do this I will make sure and put the 10
digit hash label from the ticket into the check-in comment and put a link in the
resolved ticket to the check-in.

Since I have now written the chapter and put in all these images of what to do I
can now add in all the new images to the repository and check this in as another
completed operation. And I do that like this:

14 CHAPTER 2. SINGLE USER

\ \$ fossil add Images/single-user

First I added in all the new image files. I am lazy and just told it to add in all
the files in the single-user directory. I have previously added some of those
like config-initial.png but Fossil is smart and knows this and won’t add that one
twice. Even though it shows it “ADDED”, it really didn’t.

The commit line is very important, as you can see I put the 10 digit hash code
for the ticket in brackets in the comment. As we will see in the Wiki section
(section 2.7) this is a link to the ticket, so when viewing the comment in the
timeline or elsewhere you can click the bracketed item and you would go to the
ticket.

Now that I have the items checked in I have to close the ticket. I do that by
clicking on its link in the ticket list, that will go the the View Ticket window
as shown in Figure [fig:viewticket]. From there I pick edit and fill it in as
shown:

figure placeholder

I mark it as “Closed”. If you have code you can mark this as fixed, tested, or a
number of other choices. Another very important step, I brought up the timeline
and copied the link for the commit I had just done in Figure [fig:checkin]. By
doing this my ticket is now cross linked with the commit and the commit has a
link back to the ticket.

2.6.1 Ticket summary

• Tickets are a useful way of reminding you what needs done or bugs fixed
• When you commit a change that affects a ticket, put the 10 digit hash label

of the ticket into the commit comment surrounded by brackets, e.g. [<10
digit hash>] so you can link to the ticket

• When you close the ticket put in the hash label of the commit that fixed it.

ò
The ticket system is widely customizable. See section 7.1.

2.7 Wiki

As we saw in Figure [fig:Starting-Webserver] Fossil has a browser based user
interface. In addition to the pages that are built in you can add pages to that
web site via a wiki. This allows you to add code descriptions, user manuals

2.7. WIKI 15

or other documentation. Fossil keeps all that stuff in one place under version
control. A wiki is a web site where you can add pages and links from within
your browser. Clicking on New in the submenu on the Wiki web page will create
a new page for you where you can start editing right away. You just need to
provide a page name and specify the markup language you want o use for that
page (yes, it can be different for each page!).

The page shown in the web when clicking on Home in the menu is also just
a Wiki page. By default (when not changed in the setup), this page is called
‘home’. Initially it is a stub, meaning there is no specific Wiki page with that
name. In order to create you custom home page, you need to create it. Just create
a Wiki page as described above and give it a name that you want to have for it
(it can be “home” but also any other name). When you pick the project name
that you may have specified in the Admin > Confuration menu as the name
for your home page, Fossil will show that page automatically as the home page.
When you choose another name for the page, tell Fossil that this page is your
home page by also going to the Admin menu and clicking on Configuration
in the list that appears. Here, you can specify the Wiki page that should serve
as the home page in the entry called “Index Page”. There, you want to enter:
/wiki?name=myPageName when the name “myPageName” was the name of
the page you chose.

The Wiki pages are automatically managed by Fossil’s version control system.
You don’t have to add or commit.

Since I did the setup on the repository (see Figure [fig:Initial-Configuration])
the home page has changed to this:

Home page placeholder

Not very helpful, so in the rest of this chapter I will use the Wiki functions of
Fossil to make this more useful. If I pick the Wiki item from the menu bar I get:

Wiki page placeholder

These are the controls that let you manage and modify the wiki. In essence,
this is the ‘Help’ page of the wiki. Most important for now is the Formatting
rules link. This link takes you to a page that describes what you can do
to format a wiki page. If you just type text on a page it will appear but be
formatted by your browser. You can type HTML commands to control this
formatting. It’s worth your time to carefully read this page and note what
you can and cannot do. The page just lists the valid HTML commands, and
if you don’t know what they mean, I would suggest you find a page like this
https://web.stanford.edu/group/csp/cs21/htmlcheatsheet.pdf and keep it
handy.

https://web.stanford.edu/group/csp/cs21/htmlcheatsheet.pdf

16 CHAPTER 2. SINGLE USER

ò
The wiki is customizable. E.g. you may want to show the list of wiki
pages instead of the help page when picking the wiki from Fossil’s
menu. See section [Wiki configuration] for this and for other details.

2.7.1 Wiki formatting

I now begin work. What I want to do is change the home page to be non-empty
and also put a link on the home page to the PDF of this book. In Figure [fig:Wiki-
controls] I click on the first item, the FossilBook home page. This takes me to
the home page again but now I have an “Edit” option. We also have a “History”
option so I could look at older versions of the page.

This shows my initial edit and a preview:

The page shows an edit window where I type things I want displayed and at the
top is a row of tabs inclusing a “Preview” tab showing how the page will look
like. As you can see I typed some simple HTML to make a large and centered
title. The body of the text I just typed and as you see the browser fits the text
to the screen. You can have multiple paragraphs by just putting blank lines
between your text. Next I wanted a bulleted list and this is done by typing two
spaces, a ’*’ then two more spaces. On each of these lines I have a link to a new
(not yet created page). If you look I put these in the form [<new page> |
<title>]. This way I can have a long string that describes the link but have
a nice short (no embedded spaces) page name.

OK, I will save my changes and then go to the new pages. I am doing some
complicated things here. The first link is to the book PDF. This will be a file I
create in the repository. The Pandoc program I’m using creates the PDF. I will
do that, save it, and add it to the repository. But I don’t want to link to a static
file, that is I want the most current version of the PDF, the one I save each time I
quit for the day. To do this we have to put in a link that looks like this:

[http:doc/tip/FossilBook.pdf | Book (pdf)]

This is a special link the Fossil wiki understands, doc says this is documentation.
tip says use the most current version (you could also put a version hash here
instead). And finally since I am going to put the book PDF at the top level
I only need the file name. If it was in a subdirectory I would have to say
doc/tip/subdir/filename.

The second link is just to a regular page and I can just edit that one just like I
did this the main page.

2.7.2 Wiki summary

• Format your text using HTML commands such as <h1>Title</h1> for
page headings

2.7. WIKI 17

• Create and link pages using [<page> | <Link text>]
• The page designation http:doc/tip/\<document path relative
to repository> will display any document in the repository that your
browser can handle (i.e. pdf, http etc)

• Never click on a link till after you have saved the page

18 CHAPTER 2. SINGLE USER

Chapter 3

Multiple users

3.1 Introduction

In the previous chapter I went through using Fossil with just one user (me). In
this chapter we will get into using it with multiple users. Thanks to Fossil’s
distributed design once the set up is done using it is not much different than the
single user case with Fossil managing automatically the multiple user details.

3.2 Setup

In the previous chapter the Fossil repository was a file on our system and we
did commits to it and pulled copies of the source from it. Fossil is a distributed
source control system. What this means is that there is a remote server repository
in a place that all users can access. Each user has their own “cloned” copy of
the repository and Fossil will automatically synchronize the users repository
with the remote repository. From a each user’s perspective you have your local
repository and work with it using the same commands shown in chapter 2. It’s
just that now Fossil will keep your local repository in sync with the remote
repository. This remote repository acts as a server.

3.2.1 Remote server

I have the FossilBook.fossil repository and now have to put it in place so mul-
tiple users can access it. There are two ways, the first is using fossil’s built
in webserver to host the file and the second is using the operating systems
supported web server (if present) and a cgi type access.

19

20 CHAPTER 3. MULTIPLE USERS

3.2.1.1 Self hosted

A self-hosted server is quite simply the easiest way to do it. The downside is
that you are responsible for keeping the machine available and the webserver
up. That is, don’t turn the machine off when you quit for the day or some other
user is going to be upset. All I have to do is this:

\ \$ fossil server FossilBook.fossil \&

This is on a UNIX system, the “&” at then end of the command line runs the
fossil webserver in the background. If I know this machine has an IP address of
192.168.1.200 then from any other machine in the network I can type into my
browser:

http://192.168.1.200:8081

and I can access the Fossil web server.

As you can see this is simple and works on any system that runs Fossil. As long
as you carefully make sure it’s always running and available for others this can
be a very easy way to make the repository remotely available.

The problems with this method are:

1. If you have multiple repositories you have to use the server not the ui
command, have all your repositories in the same directory, and have them
all use the extension .fossil.

2. If the machine goes offline (i.e. for OS update) or other reason it might not
automatically restart the Fossil servers.

3. Backup of the repositories might not be done.

This method does work, and if you only have one repository and a diligent
owner of the remote machine, it will work and work well.

3.2.1.2 Server hosted

If you have a server type machine available (i.e., a Linux or UNIX box) that
is running Apache or a Windows machine running IIS you can let it be the
webserver for your repository. This has a number of advantages: this machine
will be up all the time, it will probably be automatically backed up, and it can
easily support multiple Fossil repositories.

I am not going into how to set up the webserver or how to enable CGI (Common
Gateway Interface). See the following sites:

http://192.168.1.200:8081

3.2. SETUP 21

• For IIS see e.g. here https://www.ibm.com/docs/en/cognos-analytics/
11.1.0?topic=services-configuring-cgi-gateway-iis-version-7-later and
just ensure that your fossil.exe is in the path to be run by the cgi script.

• For Apache see here http://httpd.apache.org/docs/2.4/howto/cgi.html
and ensure you know the directory where the CGI scripts are stored.

If you are not in control of the webserver you will need the help of the server
admin to enable CGI and to copy your CGI scripts to the correct location.

3.2.1.2.1 CGI Script for hosted server If we assume an Apache server and, in
my case, the cgi directory path is /Library/Webserver/CGI-Executables, then
we have to write a script of the form:

#! <Fossil executable location> repository: <Fossil repository location>

and put it into the cgi script directory. I have put my Fossil executable
into /usr/local/bin and I am putting my Fossil shared repository into
/Users/Shared/FOSSIL. My script then becomes:

> #!/usr/local/bin/fossil # Put the book repository on the web repository: /Users/Shared/FOSSIL/Fossilbook.fossil

After making the script I then copy it to the CGI directory and allow anyone to
execute it.

sudo cp Book.cgi /Library/Webserver/CGI-Executables/Book.cgi

3.2.2 Local server

Actually, you can also use Fossil as a “local server”. What this means is that
the Fossil repository can just be located in any folder on your machine and
then clone from there. It must not be a remote machine. People using this just
need to have read/write access to that file path where the repository is located.
So, assume you have put your repository into /var/repos/myRepo.fossil.
Then, all users with read/write access can just do:

\ \$ fossil clone /var/repos/myRepo.fossil \textasciitilde/myClone.fossil
\$ mkdir \textasciitilde/src \$ cd \textasciitilde/src \$ fossil open
\textasciitilde/myClone.fossil

When you then work on the files and commit your code later, it will be auto-
matically synchronized (using the default behaviour of autosync on) to the
repository in /var/repos/myRepo.fossil. The drawback of this method is
that you do not have good control over what each individual user can do. If
you need that, user fossil server instead.

https://www.ibm.com/docs/en/cognos-analytics/11.1.0?topic=services-configuring-cgi-gateway-iis-version-7-later
https://www.ibm.com/docs/en/cognos-analytics/11.1.0?topic=services-configuring-cgi-gateway-iis-version-7-later
http://httpd.apache.org/docs/2.4/howto/cgi.html

22 CHAPTER 3. MULTIPLE USERS

3.2.3 Test the setup

If all is in place then I should be able to access the webserver and get to this:

Web access to Fossil CGI hosted site - placeholder

3.3 User accounts

Serving a repository, either self hosting or the more complicated CGI method
gets you to the same place as shown in Figure [fig:Web-access-to]. Now I have to
set up user accounts for the other contributors to this book. Remember Fossil has
automatically created an Anonymous user (see Figure [fig:User-Configuration])
thus others can access the site in a limited way, that is they can download the
book but cannot commit changes. In this case I want to create a new account
(Marilyn) that can make changes and commit changes as she is my editor.

To accomplish all this first I have to login by going to the log in page and
entering my ID (jim) and my password. Now since I’m super-user I then go
back to the User-Configuration page, Figure [fig:User-Configuration] and add a
new user:

New Editor user - placeholdere

Since she is going to be an editor, this will be similar to a developer if we were
doing code, so I picked the Developer privilege level. This way she can get the
repository, check-in, check-out, and write and update tickets. I also added the
attachments since she might need that to put on an image or other comment on
actions she is doing. I also gave her a password so her access can be secured.

I could add other users at this point but don’t need any others for this project,
but you can see how easily this can be done. When you assign the user privileges
just read carefully and don’t give them any more than you think they need. If
they have problems, you can easily modify their account in the future.

3.4 Multiple user operation

With the server set up and the user established the next thing to do is clone the
repository. This means to make a copy of the webserver repository on my local
machine. Once that is done this local repository uses the same commands and is
very much like single the user use discussed in section 2. Fossil will synchronize
your local repository with the one on the server.

3.4.1 Cloning

To clone a Fossil repository you have to know four things:

1. It’s web address, for our repository. It is https://fossil-scm.org/FossilBo
ok

https://fossil-scm.org/FossilBook
https://fossil-scm.org/FossilBook

3.4. MULTIPLE USER OPERATION 23

2. Your account name, in my case it’s jim

3. Your password (which I’m keeping to myself thank you. . .)

4. The local name of the repository, in this case I’m calling it FossilBook.fossil

You then go to where you want to keep the repository (in my case the FOSSIL
directory) and use the clone command:

\ \$ fossil clone https://jim:@fossil-scm.org/FossilBook FossilBook.fossil

At this point I can go through the steps outlined in section 2 to set my user
password and then open the Fossil repository on a working directory.

Now that I’ve moved everything to the new cloned repository I do a check-in
the end of the day which looks like this:

\ \$ fossil commit -m “Moved to clone repository”

As you see the files were committed locally and then the local repository was
automatically synchronized with the repository on the server.

3.4.2 Keeping the code in sync

After doing all the setup described above I now have a distributed source
control system. My co-worker, Marilyn has also cloned the repository and
begun work. She is editing the book correcting my clumsy phrasing and fixing
spelling mistakes. She is working independently and on the same files I use.
We must use Fossil to prevent us from both modifying the same files but in
different ways. Remember Fossil has no file locking, there is nothing to prevent
her from editing and changing a file while I work on it.

This is where we both must follow procedures to prevent this sort of problem.
Even though she edits files I cannot see the changes till they are committed.
Two different versions of the same file won’t be a problem till I try to commit
with my version and her version is in the current leaf.

There are two problems:

24 CHAPTER 3. MULTIPLE USERS

1. Before I do any work I must be sure I have the current versions of all the
files.

2. When I commit I must make sure what I am committing has only my
changes and is not stepping on changes she has done.

The first is pretty obvious. You make sure you have the latest version before
you do anything. We do that with the fossil update command. In figure
[fig:Cloned-repository-checkin] I had done my latest check-in. Before starting
any more work I should ensure that Marilyn hasn’t checked in something else.
I could check the timeline but instead I’ll do an update to my repository and
source files. When I do the update I specify it should be updated from the trunk.
This ensures I get it from the latest and greatest . . . and not some branch.

\ \$ fossil update trunk

Ah ha! Marilyn has been at work and updated the book source and pdf. If I
check the timeline from the webserver I see she has even documented it:

Now I know I have the current state of the world and I can proceed to add in
new sections.

�
In the default configuration, Fossil operates in ‘auto-sync’ mode
(configurable with the fossil settings command). This means
that Fossil makes sure changes by others are synced from the Fossil
server when the fossil update command is used. When doing
a commit, Fossil will automatically push your changes back to the
server you cloned from or most recently synced with. When doing
an update, Fossil will first go to that same server and pull the recent
changes to your local repository, then merge them into your local
source tree.

3.4.3 Complications

The second problem described in section 3.4.2 is much harder. In this case I
have diligently done my fossil update and started working. In the mean
time Marilyn has also done her update and also started working. Now she is
done and checks in her changes. I obviously don’t know this since I am happily
working on my changes. What happens next . . .

3.4. MULTIPLE USER OPERATION 25

\ \$ fossil commit -m “Commit that might fork”

Ah ha, that very thing has happened and Fossil warned me that my copy of
the file differs from the master copy. If I had provided the option -force to
the commit then the repository would generate a fork and Marilyn’s future
commits would be to her fork and my commits would be to mine. That would
not be what we want since I want her to edit my copy of the book.

The next step would be to do as Fossil says and do an update. At this point
you have to be careful since blindly updating the changed files could overwrite
the stuff I’ve just done. So we do a trial update by using the -n and -v options
to say “do a dry run” and show me the results_

\ \$ fossil update -n -v

That’s a little more than I wanted as you can see almost everything is
UNCHANGED but it shows that my file needs a MERGE and fossilbook.pdf needs
an UPDATE. This is what I should expect, Marilyn has done edits to the . . . file
and so have I. So we have to merge the changes. But she has also updated the
fossilbook.pdf which I have not. Before we go on if you are running on Linux
or UNIX you can simplify this dry run by doing:

\ \$ fossil update -n -v \textbar{} grep -v UNCHANGED

By using the pipe and grep I can eliminate all those extra UNCHANGED lines.

3.4.4 Fixing the update file

First we fix the easy file, the fossilbook.pdf I can just update by itself so it
matches the current repository. It doesn’t need to be merged, so I just replace it.
Before I do that I have to look at the repository time line

Placeholder for Timeline figure

26 CHAPTER 3. MULTIPLE USERS

I see that the current Leaf is . . . [d44769cc23]. . . and it is tagged as trunk. I want
to update the fossilbook.pdf from there. So I say:

\ \$ fossil update trunk fossilbook.pdf

and it’s done.

3.4.5 Fixing the merge file

We can use the tools built into Fossil. In this case noticing that commit will
cause a fork, Jim will use the -force option to cause the fork and will handle
the merge later.

\ \begin{quote}
fossil commit -m “adding some changes of jim”
\end{quote}

Now the timeline looks like:

Placeholder for Timeline figure

To remove this fork (i.e. get the changes Marilyn did into the trunk) we use the
Fossil merge command. We can use the merge because . . . fossilbook.lyx. . . is
a text file and the merge markers are designed to work with text files. If it was a
binary file we might have to use an external file or copy and paste between the
two file versions using the handler program for the file.

\ \begin{quote}
fossil merge a91582b699
\end{quote}

Looking at the file (fossilbook.lyx) in a text editor (not LyX) we find:

> \>>>>>>> BEGIN MERGE CONFLICT

3.4. MULTIPLE USER OPERATION 27

Placeholder for now

After the commit the timeline shows how the merge brought the fork back into
the main trunk. Marilyn will then have to update to this new trunk. (See Section
[sub:Updating-by-others])

3.4.6 More on merge conflicts

Sometimes, you may get notified about a merge conflict when updating (fossil
update) your locally changed code due to changes others have done and
already commited. That means Fossil cannot resolve this by itslf. Fossil cannot
figure out how to combine your own and the other person’s changes. It simply
can’t know which is the right code. Apart from the possibility of doing a
fossil undo and re-investigate the situation manually, you can also look at
the merged file and resolve the conflicts there. This is how a merge conflict
looks like (the example is some Tcl code):

<<<<<<< BEGIN MERGE CONFLICT: local copy shown first <<<<<<<<<<<< (line 83)
if {$myvar eq "one"} {::do::something $myvar}

||||||| COMMON ANCESTOR content follows ||||||||||||||||||||||||| (line 83)

======= MERGED IN content follows =============================== (line 67)
if {$myvar eq "one"} {::do::something $myvar; puts "Hello"}

>>>>>>> END MERGE CONFLICT >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

What does this all mean? The merge conflict is shown as three parts: It always
starts with a line of <<<<<, has a line with |||| somewhere in between and
ends with another line of >>>>>. The first part is the local copy. This is your
own edits to the file. Then you see the common ancestor. That is how the file
looked before both persons started editing this particular location in the file.
At the end is the merged in content. That is what the other person did to the
file. So, you have your own edits, the clean prior version and the other person’s
edits. Now, you just need to decide which of the three versions is correct. It
might be that your edit is correct and the other person did it wrongly or had no
right to actually change this part. Then, just delete the second and thrid part
and remove the lines that Fossil inserted to mark the conflict. If your version
didn’t get it right, just remove the first and second part. However, it can well be
that both participants have got it right, just in different places. Then you have
to manually figure out which parts of your own version should stay and you
will manually merge the code from both versions.

28 CHAPTER 3. MULTIPLE USERS

3.5 Sharing other changes than code

3.5.1 Sharable content

When multiple users are working on the code, they may also want to use their
local clone of the repository for tickets, the wiki and other stuff. So, while the
local code changes are synchronized with the server using the fossil commands
update and commit (or pull and push if you do it manually), other parts of
the repository are not synchronized. If you want to see the current set of tickets
or the wiki in your local copy of the repository as well, you need to synchronize
those with the command fossil sync.

This command will synchronize all sharable content:

• check-ins
• wiki pages
• tickets
• forum posts
• tech notes
• unversioned content (using the additional option -u)

This is particularly useful if you cannot work on the remote server for a reason.
You can start your local server with fossil ui, make changes to e.g. wiki
pages and the sync the changes back to the remote server with fossil sync.

3.5.2 Synchronize the Fossil configuration

When cloning the remote repository, you also get the current configuration of
the repository. This includes e.g. the skin and the ticket setup. When these
settings change on the server, they will not automatically be synchronized
with your local clone of the repository. So you may end up in a situation
where you create a new ticket locally that does not reflect the structure of the
tickets on the server because the server configuration has changed! So, if some
important configuration changes on the server, you can (and should) pull those
changes into your local clone. This is done using the fossil configuration
command (see the section on the 8.5.5 command for all details). It can be used
to change the configuration of the following areas:

• email
• interwiki
• project
• shun
• skin
• ticket
• user
• alias
• subscriber

3.5. SHARING OTHER CHANGES THAN CODE 29

So, to pull a changed ticket configuration into the local clone, you issue the
following command:

\ \begin{quote}
fossil configuration pull ticket
\end{quote}

Using the configuration command, you can also import and export con-
figurations via text files and even do a kind of merge operation. This makes
it possible to edit more complex configurations in an editor of your choice
(e.g. when you want to have some syntax highlighing). You can also push your
local changes back to the server but that will require administeation priviliges
on the remote server. Last but not least, you may want to do a ‘real’ sync,
synchronizing configuration changes in the local repository with the remote
repository. When you use the keyword ‘all’ for the area, all of the above areas
will be synchronized:

\ \begin{quote}
fossil configuration sync all
\end{quote}

30 CHAPTER 3. MULTIPLE USERS

Chapter 4

Forks and branches

4.1 Introduction

This chapter will cover forking and branching in Fossil. Forking is where you
unintentially create two places to check into a repository. Branching is where
you intentially do this because you want to maintain two or more versions of the
code in the same repository. We illustrated forking and it’s solutions in section
3.4.3. If, instead of fixing (merging) the file then doing the commit, we forced
the commit, Fossil would fork the repository.

Forking is something to avoid because it creates two check-in paths for the code.
Thus different users will be on different paths and can check in contradictory
changes. Branches on the other hand are forks that you desire. These occur
when you want to have two different versions of the code base in development
at the same time. A typical scenario is having a production verison of the code
under maintenance and a development version both served from the same
repository. In this case development changes should only be checked into the
development branch. Maintanence changes might have to be checked into both.

Instead of using the book repository for these examples we will use a JSON
parser program that has a number of files and documentation. This will make it
simpler to illustrate branching and tagging.

There is a good discussion of these topics on the Fossil Web site: https://fossil-
scm.org/home/doc/trunk/www/branching.wiki.

4.2 Forks, branch and merge

In this case the JSON code has just been placed in Fossil and two developers
check out copies to work on. Jim wants to fix a number of compiler warnings
that appear and Marilyn wants to fix the documentation. In both cases they

31

https://fossil-scm.org/home/doc/trunk/www/branching.wiki
https://fossil-scm.org/home/doc/trunk/www/branching.wiki

32 CHAPTER 4. FORKS AND BRANCHES

proceeed as shown in chapter 3. The JSON code has been placed in a distributed
location, each of them clones the repository, and opens a working copy of the
code.

4.2.1 Marilyn’s actions

She looks through the documentation and finds a number of problems and fixes
them (the documentation uses LyX and PDFs). When she is satisfied with what
she has done, she checks the current version of the documentation in:

4.2.2 Jim’s actions

At the same time, Jim gets a working copy of version [6edbaf5fa8] of the
code, puts in a ticket [d23bf4bbbb] as shown in Figure [fig:Marilyn’s-work].
After fixing the warnings, Jim is done and goes to commit. He does this after
Marilyn has done her commit:

\ jim\$ fossil commit -m “{[}d23bf4bbbb{]} Remove warnings”

At this point Fossil recognizes that Marilyn has changed the repository (she
updated the documentation) but Jim does not have these changes because he
checked out an earlier version of the code. Jim says he must get his changes in
so he does a FORCE to force fossil to accept the commit:

\ jim\$ fossil\{\} commit -m “{[}d23bf4bbbb{]} Remove warnings” -f

Looking at the timeline Jim sees this:

Not good, there are two Leafs and Marilyn would commit code to her fork
and Jim would be commiting code to his. So Jim must fix this by merging
the code. Jim wants to merge versions [b72e96832e] of Marilyn and his
[1beab85441].

4.2.3 Fixing the fork

So Jim who’s checked out code is from Leaf [1beab85441] does a merge with
Marilyn’s leaf [b72e96832e] like so:

4.3. MERGE WITHOUT FORK 33

\ jim\$ fossil merge b72e96832e

As shown the two documentation files are updated, there are no merge conflicts
as Jim didn’t touch these files and Marilyn didn’t touch the code files.

Next Jim does a commit to make this new merged set of files the new trunk.
Remember doing the merge shown in Figure [fig:Merge-Operation] just updates
your checked out code and does not change the repository till you check it in.

\ jim\$ fossil commit -m “after-merging-in-changes”

When we look at the timeline we have a single leaf for future code commits.

The only other thing remaining is that Marilyn does an update before proceed-
ing so her checked out code matches the repository.

\ marilyn\$ fossil update

4.2.4 Commands used

fossil merge <fork> Used to merge a fork (specified by hash value) to current
check-out.

fossil update <version> Used to update current check-out to specified version,
if version not present use default tag for check-out (see fossil status)

4.3 Merge without fork

In this case I will show how to merge in code changes from multiple users
without causing a fork. In this case Marilyn has put in a BSD license text into all
the code files while Jim is adding a help function to the code. In this case both
of them put in tickets saying what they are doing but acting independently.

34 CHAPTER 4. FORKS AND BRANCHES

4.3.1 Check-in attempt

Marilyn finished first and checks in her changes. Jim builds, tests and tries to
check in his code and gets:

\ jim\$ make

4.3.2 Update

The next action Jim takes is to do the update but without doing changes, using
the -n flag which tells it to just show what’s going to happen without making
any file changes.

\ jim\$ fossil update -n

This shows some files will be updated, i.e. be replaced by new text from the
repository. The main.c file will be merged with the version from the repository.
That is text from the repository will be mixed with the text from Jim’s modified
file. Note that it says MERGE meaning the two sets of text are a disjoint set.
This means the merge can all be done by Fossil with no human intervention.

Jim can just do the update for real then commit the merged files to make a
new leaf. So now we have Marilyn’s and Jim changes combined in the lastest
version.

4.3.3 Commands used

fossil update -n Does a dry run of an update to show what files will changed.

– UPDATE Implies file will be replaced by repository file – MERGE Implies file
will be mixed text from repository and check out

4.4 Branching

4.4.1 Introduction

We have discussed this before but branching is the intential splitting of the code
in the repository into multiple paths. This will usually be done with production

4.4. BRANCHING 35

code where we have maintenance branch and a development branch. The
maintenance branch is in use and would get bug fixes based on experience. The
development branch would get those changes if applicable plus be modified to
add features.

The JSON code parser has been tested and works so will be released to general
use. Also we wish to modify it to add support for UTF-8 characters so it matches
the JSON standard. The current version just works with ASCII 7 bit characters
which is not standard. We wish to split the code into a VER-1.0 branch which
is the current code in use and VER-2.0 branch which will add UTF-8 character
support.

4.4.2 Branch the repository

Before proceeding we will make sure we have the current trunk code in our
check-out.

\ \$ fossil status

Seeing that matches the latest leaf in the time line we can proceed to branch the
code.

\ \$ fossil branch new VER-1.0 trunk -bgcolor 0xFFC0FF \$ fossil branch
new VER_2.0 trunk -bgcolor 0xC0F0FF

What was just done? We used the Fossil branch command to create two branches
named VER-1.0 and VER-2.0 and assigned each of them a specific color. We can
see the timeline is now:

Instead of creating the branch explicitly, we could also have continued changing
the code in the trunk. When doing the commit we can still decide that those
new changes shouldn’t go into trunk anyway but into a new branch. For this,
we just need to specify the new branch with the commit command:

\ \$ fossil commit -branch VER-1.0 -branchcolor 0xFFC0FF

36 CHAPTER 4. FORKS AND BRANCHES

4.4.3 Color setup

As you see above the two branches have different colors in the timeline. This
was due to the -bgcolor option added when we created each branch. (See Figure
[fig:Branch-commands]). But we want this color to appear on subsequent check-
ins of each of these branches. To make that happen we have to set the options
using the UI and picking a particular leaf on the timeline.

Under the ‘Background Color’ section I have checked ‘Propagate color to de-
scendants’ so future check-ins will have the same color.

4.4.4 Check out the branches

Now the the repository is branched we can check out the two sets of code into
different directories. We create jsonp1 and jsonp2 and proceed to open the
different branches into them.

\ \$ cd jschimpf/Public/jsonp1 \$ fossil open ../FOSSIL/jsonp.fossil
VER-1.0

Checking out VER-2.0 in the same way

\ \$ cd jschimpf/Public/jsonp2 \$ fossil open ../FOSSIL/jsonp.fossil
VER-2.0

Notice on both of these the tags show which branch we are attached to.

4.4.5 Correcting errors in both

After doing this work I found that the main.c file had a warning about an
unused variable. I wanted to correct this in both branches. At this point all
the files in both branches are the same so correcting the file in either branch
and copying it to the other is possible. I put in a ticket for the change and edit
main.c. I copy it to both check-outs for the both branches and then check both
in.

4.4. BRANCHING 37

\ \$ cd jschimpf/Public/jsonp1 \$ fossil commit -m “{[}2795e6c74d{]} Fix
unused variable”

Now the timeline looks like this:

4.4.6 Private branches

Sometimes you may want to create a branch but keep the changes in that branch
private. E.g. , this may be some experimental code you do not want to share with
the other users (yet). To do this, you just create a branch and declare it ‘private’.
This means, the branch will stay in your local copy of the repository but it will
not be sychronized with the remote repository and thus not distributed to others
during a commit:

\ \$ fossil commit -branch myTests-123 -private”

Of course, you can do the same with the fossil branch command. It also
has the --private option. If you at some time decide to make your branch
public, you can do so with the 8.3.18 command.

�
You can associate wiki pages with branchs using a name for the wiki
page starting with branch/. Note though, although the code is pri-
vate and not shared, the associated wiki page will be synchronized.
Wiki pages are separate from all file-level content and do not take
part in branching (or merging etc.). So, the wiki page is associated
with that private branch but is not a part of that branch (in terms of
the underlying artifact mechanism).
Source: Fossil forum post

4.4.7 Cherrypicking

Sometimes, you might want to have the changes done on a single file in a specific
branch. However, that file is not in your own branch. This is often called to
“cherrypick a file” from a different branch than the one you are working on.
This idea is different from what Fossil calls “cherrypicking”.

https://fossil-scm.org/forum/info/e0eefb5e29e380f04369

38 CHAPTER 4. FORKS AND BRANCHES

For Fossil, “cherrypicking” is an option when doing fossil merge. It merges
the changes done in a specific version with the current check-out instead of
merging all changes back to the nearest common ancestor (see the previous
sections for description of this process). With fossil merge, you cannot
just take one file and transfer it from one branch to another. Fossil does not
track merge information for individual files. It only tracks merges across whole
check-ins.

But can we do this? Yes, we can. One way would be to make a fossil merge
--cherrypick followed by a fossil revert on the files we didn’t want to
pick and then committing the changed files. This, however, is tedious when you
only want a single file from another branch. A better approach is ti just use the
‘FILES. . . ’ argument of the fossil update command:

\ \$ fossil update OTHER_BRANCH FILE_TO_CHERRYPICK

This will merge the most recent version of FILE_TO_CHERRYPICK from the
branch OTHER_BRANCH into your current check-out. OTHER_BRANCH can
also be any version so you can pick a specific version from a specific file that
happens to live in any branch. The only drawback is the fact that this action
will not be logged and thus there won’t be any trace of this in the timeline. It is
a good idea to then make a note in the next commit in order to document this
operation.

4.4.8 Commands used

fossil branch Used to generate a branch of the repository. The command can
optionally color the branch in the display.

fossil commit –branch Committing a new version into a new branch

Chapter 5

The Fossil user interface

Fossils graphical user interface is a web site directly served from the repository.
It allows to inspect the history, documentation, tickets and other information on
the repository. This interface is what users will likely see in the first place when
they want to learn about your software project.

5.1 fossil ui

{» . . . about the ‘fossil ui’ command with reference to commands.md . . . «}

5.2 Home

5.3 The timeline

The timeline presents a graphical overview of the development of your project.
I t can list all kinds of events that happened within the project:

• Check-ins
• Tickets (and a list of new tickets)
• Wiki
• Tech notes
• Tags

. . .

5.3.1 Check-ins

Each check-in is presented as one point on the timeline.

. . .

39

40 CHAPTER 5. THE FOSSIL USER INTERFACE

5.4 File

5.4.1 The timeline of a single file

You can also display the timeline of a single file (as opposed to a check-in with
multiple files). There are three possibilities to get there.

1. Navigating to the file, starting from the ‘File’ menu.

Browse to desired file. Click on the file link. you will see the content of the file
if is is a text file. Below the main menu (on top), you will see a line starting
with the word ‘File’ and followed by the file name (as a link) and the check-in
context. Click on that file name link. This brings you to the /finfo page for
this file showing the timeline for this single file.

2. Starting from the full timeline

Click on the check-in link (the hash value) in the timeline. You see some
metadata (a section called ‘Overview’), the timeline context (a section called
‘Context’) and below the diffs for files affected by this check-in (a section called
‘Changes’). In that last section you will see some lines saying ‘Modified . . . ’ with
a linked file name. Click on that link and you will get to the page showing the
timeline for this single file.

There also is the possibility to see the history of all files in a specific directory
(recursively). For this, go to the ‘File’ section, ensure you are in ‘Flat View’ (not a
tree view that can expand/collapse) Browse to desired directory and then click
on the ‘History’ link on second-level menu. You will see a timeline of check-ins
that affected any file within that directory. You will, however, not get a list of the
files affected during each check-in. For this, you need to click on the individual
check-ins and then look into the ‘Changes’ section of that check-in.

5.5 Branches

5.6 Tags

5.7 Tickets

5.8 Wiki

5.9 Admin

5.10 Login

Chapter 6

Fossil’s markup languages

There are several places in Fossil where you can enter free text: checkin com-
ments, tickets and technotes, wiki, forum and chat. The following tables shows
which formatting the text can have in these places:

Text type Plain text HTML Wiki Markdown Other

Checkin comment x
Ticket x x x x links only
Technote x x x
Wiki x x x
Forum x x x
Chat x

In most places you can choose between plain text, Wiki markup or Markdown.
Most formats are supported by tickets while checkin comments and the chat
only support one single formatting. However, this is not necessarily a restriction.
Everywhere Markdown is supported, you can just in practice use plain text.
You just need to be aware that some plain text characters in some formatting is
being specially interpreted. So, if you just use the basic letters of the alphabet,
numbers and some simple punctuation and a blank line for a new paragraph,
you can just pretend that Markdown is the same as plain text. Further, the Wiki
markup does support a subset of HTML in terms of “most ordinary HTML
works”. So you can also use some HTML. Note, for this to have an effect, you
need to change a setting in the Fossil Admin menu. You will want to uncheck
the setting “Plaintext comments on timelines” under the “Timeline” section.
Otherwise, your HTML will be treated as plain text.

All formats are text-based, i.e. they use ASCII characters to start with. Being a
modern system, Fossil of course provides more than just 8 bits. So, the texts are

41

42 CHAPTER 6. FOSSIL’S MARKUP LANGUAGES

regarded as being UTF-8 text (as is the case for all structural artifacts in Fossil).
You can use any UFT-8 character you like.

�
Tor the above-mentioned texts, you specify the file type explicity
when creating the file. For the [embedded docs], Fossil acually uses
the file extension only for determining the mime type. The mime
type is then used to determine how to render the text (Fossil doesn’t
associate any metadata with files except for the is-executable bit,
name, size, and hash.)

((Links to Fossil artifacts (commits, tickets, even files and wiki pages) are a
special case of wiki links. A hexadecimal number instead of a page name.))

6.1 Plain text

This is the most simple markup, doing nothing specical in essence. Every
character you type comes out as it is. In addition, you can use a newline or tab
character and these will do what you woud expect in a simple text editor.

6.2 HTML

This format is only used in tickets. You can use any HTML that the browser is
able to render.

6.3 Wiki markup

This format allows various structural text features to be written using some
special characters. Basically, the following rules apply:

1. Any blank line (or more consecutive ones) will translate into a paragraph
break

2. A bullet list is created by starting a line with a “*” surrounded by two or
more spaces or by a tab character

3. An enumerated list is created by staring a line with a single “#” or a digit
and a “.” surrounded by two or more spaces or by a tab character

4. An indented paragraph begins with a tab character or with two or more
spaces

5. Hyperlinks are created using square brackets. The target URL is inside
the brackets [target]. After the URL, you can put the “|” character

https://fossil-scm.org/home/doc/trunk/www/fileformat.wiki

6.4. MARKDOWN 43

followed by some alternative text which will then be shown instead of the
URL: [target|label].

Besides traditional URLs, there are some special links in Fossil. If the target is
the name of a wiki page, the URL will be changed to point to that Fossil wiki
page within the repository. When the target is a hexadecimal artifact ID, the
link will point to the respective Fossil artifact. This can be a checkin, a ticket
or a forum post. The target can also be an interwiki link using a prefix ending
in a colon :. So the link [forum:768b3ded0e] will translate to a URL of a
specific forum post. [wikipedia:Fossil] will link to the english Wikipedia
for, well, the article about what a fossil is. Here are some examples:

[https://fossil-scm.org]
[https://fossil-scm.org|Fossil web page]

[811d2dfd0a]
[811d2dfd0a|this checkin]

[768b3ded0e]
[768b3ded0e|my important forum post]

[history]
[history|Wiki page named hisotry]

You can even define your own interwiki prefixes!

6. Most ordinary HTML works

7. The <nowiki> tag disables all wiki formatting rules through to the match-
ing </nowiki> element. The <verbatim> tag works like the HTML
<pre> tag, with the addition that it also disables all wiki and HTML
markup through to the matching </verbatim>. Text within <verbatim
type=“pikchr”>. . . </verbatim> is formatted using 9.

6.4 Markdown

Fossil supports the original markdown by Gruber plus some additions. It has
syntax for paragraphs, headings, links (including some special Fossil links
and interwiki links), font styling, lists (bulleted, numbered, nested lists), block
quotes, literal/verbatim text and code blocks (including 9), simple tables and
some HTML.

44 CHAPTER 6. FOSSIL’S MARKUP LANGUAGES

6.4.1 Paragraphs

6.4.2 Headings

6.4.3 Links

Hyperlinks are created using a set of square brackets followed by parentheses.
The brackets contain a textual description and will be the visible part in the
redered document. The parentheses contain the URL:

here is a link to an [artifact](04fc214fe9)
we do not exactly need a textual description: [](04fc214fe9)

link to a [ticket](tktview?name=0218d3322d)
also link to a [ticket](0218d3322d)

link to a [wiki page](wiki?name=history)
also a link to the same [wiki page](wiki:hisotry)

link to a [forum post](forumpost/29e6f90018)
this will also get you to the [forum post](29e6f90018)

Just as for the wiki markup, if the URL is the name of a wiki page, the URL will
be changed to point to that Fossil wiki page within the repository. When the
target is a hexadecimal artifact ID, the link will point to the respective Fossil
artifact. This can be a checkin, a ticket or a forum post. In the case of Wiki pages,
an interwiki link can be used via the prefix wiki:.

6.4.4 Font styling

6.4.5 Lists

6.4.6 Block quotes

6.4.7 Literal/verbatim text

6.4.8 Code blocks

6.4.9 Tables

6.4.10 HTML

6.5 Links only

Chapter 7

Fossil configuration

Fossil can be configured or customized to you own needs in a variety of ways.
This section cover the configuration of some aspects you can change via the
Fossil Admin menu in the browser interface of Fossil.

7.1 Ticket configuration

The ticket system is just a set of Fossil change artifacts at the lowest level. On
top of this, two database tables are automatically populated: one for the ticket
itself and one for the ticket changes. These two tables facilitate display and
reporting of tickets and are kept in sync with the artifacts by Fossil. This also
means, the ticket system is very flexible and can be customized in a variety of
ways. In order to understand these possibilities, it is good to first explain how
the ticket system works.

7.1.1 The structure of tickets

The ticket system has a standard configuration. Let us look at this in detail. For
this, we will not dig into the ticket change artifacts as this is not needed for the
configuration. For now, we can safely focus on the two ticket tables as if they
were the whole ticket system.

Every ticket consists of several fields that can carry some values, e.g. a title
field holding the title of a ticket which can then be shown in the ticket report
lists. The predefined fields have names which correspond to database columns
in the ticket table which holds a summary of the current status of the ticket:

45

46 CHAPTER 7. FOSSIL CONFIGURATION

field meaning

tkt_id a unique ticket id (just a running
number)

tkt_uuid the unique hexadecimal identifier for
the ticket

tkt_mtime last modification time of the ticket
tkt_ctime creation time of the ticket
type the ticket type (e.g. ‘bug’ or ‘feature

request’)
status the state of the ticket (e.g. ‘open’ or

‘deferred’)
subsystem used to assign the ticket to different

parts of the code
priority priority level of the ticket
severity severity level of the ticket
foundin used for the software version the

ticket belongs to
private_contact used for email addresses of eternal

people submitting tickets
resolution how the ticket was finally resolved
title a short title for the ticket
comment a text describing the ticket in more

detail

The fields starting with tkt_ are so important for the internal workings that
you should leave them alone. You can use them to retrieve the information
stored but you never delete or rename these fields. Treat them as reserved for
Fossil. The other fields are completely free to be changed for your own needs!
The ticketchng table contains the changes each ticket has undergone. It has
the following fields:

field meaning

tkt_id a running number identifying every change
tkt_rid the ID referring to the ticket change artifact
tkt_mtime the timestamp of the moment the change occurred
login the login name of the user who made the change
username the username corresponding to the login
mimetype the mime type of the comment text for the change
icomment the comment text for the change

Again, all fields starting with tkt_ should be left alone and treated as read-only.

7.2. MENU CONFIGURATION 47

7.1.2 How tickets are displayed in the UI

7.1.3 What can be customized

7.2 Menu configuration

The main menu for the web interface has a standard configuration which is
defined under Admin > Configuration. It consists of a (Tcl formatted) list
where each menu item has four elements. It is explained on the configuration
page what the elements mean. By default, all skins make use of this configu-
ration (via the TH1 variable $mainmenu). However, note that a skin can skip
this menu and rely on its own menu or take the default menu and modify the
visibility according to its needs. So be sure to always check the current skin
also when you don’t see that your changes of the man menu get visible. When
you want add your own menu item to the main menu, you just need to add an
appropriate item to the list. Any existing page can be used here. If you want to
have clean URLs, you can use the setting Admin > URL Aliases to map the
page to another URL. ## Wiki configuration

Picking the Wiki item from the Fossil menu bar shows the wiki help page by
default. You can change that. You may want to show the list of existing wiki
pages instead so you can go to every wiki page from here. For this, you need to
modify the Fossil skin. Pick Admin in the Fossil menu bar and click on ‘Skins’.
Follow the outlined procedure to initialize the skin editing process (steps 1 to
3; see section 7.4 for details). Then, edit the ‘Header’ (in Step 4). This will
bring up the HTML and TH1 code for the Fossil menu (see section 10 for details
on the TH1 language). The only thing you need to do is to change \wiki to
\wcontent in the part of the code that handles showing the wiki menu item.
After applying this change, you will need to end the skin editing by doing steps
7–5.

7.3 Users configuration

7.4 Skins configuration

7.5 Configure email notifications

. . . There are two ways to find out who has subscribed to the notification
service. You either go via Admin > Users and click on the submenu item
Subscribers. Another way is to go via Admin > Notifications and
then click on the corresponding submenu item or the linked text below telling
you the status of the notifications system. The word “Subscribers” is a lik to
that page.

48 CHAPTER 7. FOSSIL CONFIGURATION

7.6 Configure times and dates

By default, Fossil stores and shows all times as UTC. While it is fine to have
the times uniformly stored as UTC, sometimes you might want to have them
shown in your own timezone. For the 8.4.4, this can be configured in the Admin
menu (Admin > Timeline > Use UTC).

In other places of the web interface, the time format may be determined by how
you retrieve the data from the repository. For example, the SQL queries used to
show a ticket report typically uses this kind of SQL query:

SELECT ..., datetime(tkt_mtime) AS ...

Here, you will need to change the SQL query using SQLite’s localtime modi-
fier of the datetime() function:

SELECT ..., datetime(tkt_mtime,'localtime') AS ...

The same kind of SQL is used in the [TH1] script used for showing the details
of a ticket (/tktsetup_viewpage) for the list of ticket changes.

(What about the times on artifact pages or the creation time of a ticket on the
tkt_viewpage?)

Chapter 8

Fossil commands

8.1 Introduction

This section presents and explains the various Fossil command line commands.
There is a section for each command Fossil knows. The most important com-
mand is help. You can always type fossil help at the command line and
it will list out (nearly!) all the commands it has. Then typing fossil help
<command> will print out the detailed information on that command. You
always have that as your reference.

This chapter of the book will supplement the built in help text with some more
explanation and with some examples of how the commands are used. All of the
commands are placed in the index for easy searching.

There are a few terms that are used again and again in the description of the
commands, so let us briefly look at what they mean, just to be sure:

• repository = the database that Fossil manages to keep track of you code
• current check-out = the working files which you edit to change your code
• a (new) version = a set of files in the repository reflecting a certain point

in time (typically a specific state of your code)

These are the basic command that you likely will use most:

• add - Make arrangements to add one or more files or directories to the
current check-out at the next commit

• changes - Report the change status of files in the current check-out
• checkout - Changes the current check-out to a specific version
• commit - Create a new version containing all of the changes in the current

check-out
• delete - Remove one or more files or directories from the repository

49

50 CHAPTER 8. FOSSIL COMMANDS

• diff - Show the difference between the current version of file(s) as they
exist on disk and that same file as it was checked out

• extras - List all files in the source tree that are not part of the current
check-out

• gdiff - see diff
• help - Display information on how to use a command, webpage, or setting
• rename - Move or rename one or more files or directories within the

repository
• revert - Change a file in the check-out to the current or a baseline repository

version
• server - Serve a repository via a web page
• status - Report the change status of files in the current check-out
• ui - Start the web frontend of Fossil on the local computer
• undo - Reverts the changes caused by some (not all) previous command
• update - Change the version of the current check-out to a specific version

Then there are typical maintenance commands:

• all
• branch
• clean
• clone
• close
• info
• merge
• new
• open
• publish
• pull
• push
• rebuild
• settings
• sync
• tag
• version

Other commands:

• finfo
• timeline
• user
• wiki
• zip

Advanced commands:

• configuration
• descendants
• scrub

8.2. BASIC 51

• search
• sha3sum

8.2 Basic

8.2.1 help

This command is used to dump the current command set and version of Fossil.
It can also be used in the form fossil help <command> to get further information
on any command.

Actually this will give you only a subset of the help commands, limited to the
commands that are used most often. If you want to see all commands available
then issue the fossil help –all command. Between versions you will see changes
as to what is included in the help sub-set.

An example of using the help function to get further information about a partic-
ular command:

$ fossil help
Usage: fossil help TOPIC
Try "fossil help help" or "fossil help -a" for more options
Frequently used commands:
add cat extras merge rm ui
addremove changes finfo mv settings undo
all clean gdiff open sql unversioned
amend clone grep pull stash update
annotate commit help push status version
bisect dbstat info rebuild sync
blame delete init remote tag
branch diff ls revert timeline
This is fossil version 2.14 [939a13d94f] 2020-11-20 19:28:05 UTC

Adding the optin -a (or -all) to the help command results in a listing of ALL
the available commands:

$ fossil help -a
3-way-merge clean hook rebuild stash
add clone http reconstruct status
addremove close import redo sync
alerts co info remote tag
all commit init remote-url tarball
amend configuration interwiki rename ticket
annotate dbstat leaves reparent timeline
artifact deconstruct login-group revert tls-config
attachment delete ls rm touch
backoffice descendants md5sum rss ui
backup diff merge scrub undo

52 CHAPTER 8. FOSSIL COMMANDS

bisect export mv search unpublished
blame extras new server unset
branch finfo open settings unversioned
bundle forget pikchr sha1sum update
cache fts-config pop3d sha3sum user
cat gdiff praise shell uv
cgi git publish smtpd version
changes grep pull sql whatis
checkout hash-policy purge sqlar wiki
ci help push sqlite3 zip

Use it to get further information about a particular command:

$ fossil help help
Usage: fossil help [OPTIONS] [TOPIC]

Display information on how to use TOPIC, which may be a command, webpage, or
setting. Webpage names begin with "/". If TOPIC is omitted, a list of
topics is returned.

The following options can be used when TOPIC is omitted:

-a|--all List both common and auxiliary commands
-o|--options List command-line options common to all commands
-s|--setting List setting names
-t|--test List unsupported "test" commands
-x|--aux List only auxiliary commands
-w|--www List all web pages
-f|--full List full set of commands (including auxiliary

and unsupported "test" commands), options,
settings, and web pages

-e|--everything List all help on all topics

These options can be used when TOPIC is present:

-h|--html Format output as HTML rather than plain text
-c|--commands Restrict TOPIC search to commands

As you can see from the description, fossil help -a doesn’t even list all
possibilities. With the -f option, you get even more!

8.2.2 add

The add command is used to add files into a repository. It is recursive and will
pull in all files in subdirectories of the current. Fossil will not overwrite any of
the files already present in the repository so it is safe to add all the files at any
time. Only new files will be added.

8.2. BASIC 53

$ fossil help add
Usage: fossil add ?OPTIONS? FILE1 ?FILE2 ...?

Make arrangements to add one or more files or directories to the
current check-out at the next commit.

When adding files or directories recursively, filenames that begin
with "." are excluded by default. To include such files, add
the "--dotfiles" option to the command-line.

The --ignore and --clean options are comma-separated lists of glob patterns
for files to be excluded. Example: '*.o,*.obj,*.exe' If the --ignore
option does not appear on the command line then the "ignore-glob" setting
is used. If the --clean option does not appear on the command line then
the "clean-glob" setting is used.

If files are attempted to be added explicitly on the command line which
match "ignore-glob", a confirmation is asked first. This can be prevented
using the -f|--force option.

The --case-sensitive option determines whether or not filenames should
be treated case sensitive or not. If the option is not given, the default
depends on the global setting, or the operating system default, if not set.

Options:

--case-sensitive BOOL Override the case-sensitive setting.
--dotfiles include files beginning with a dot (".")
-f|--force Add files without prompting
--ignore CSG Ignore unmanaged files matching patterns from

the Comma Separated Glob (CSG) pattern list
--clean CSG Also ignore files matching patterns from

the Comma Separated Glob (CSG) list
--reset Reset the ADDED state of a check-out, such

that all newly-added (but not yet committed)
files are no longer added. No flags other
than --verbose and --dry-run may be used
with --reset.

The following options are only valid with --reset:
-v|--verbose Outputs information about each --reset file.
-n|--dry-run Display instead of run actions.

See also: addremove, rm

Typing:

54 CHAPTER 8. FOSSIL COMMANDS

fossil add .

will add all files in the current directory and subdirectories.

Note none of these files are put in the repository untill a commit is done.

8.2.3 rm or del

The rm command is used to remove files from the repository. The file is not
deleted from the file system but it will be dropped from the repository on the
next commit. This file will still be available in earlier versions of the repository
but not in later ones.

$ fossil help rm
Usage: fossil rm|delete|forget FILE1 ?FILE2 ...?

Remove one or more files or directories from the repository.

The 'rm' and 'delete' commands do NOT normally remove the files from
disk. They just mark the files as no longer being part of the project.
In other words, future changes to the named files will not be versioned.
However, the default behavior of this command may be overridden via the
command line options listed below and/or the 'mv-rm-files' setting.

The 'forget' command never removes files from disk, even when the command
line options and/or the 'mv-rm-files' setting would otherwise require it
to do so.

WARNING: If the "--hard" option is specified -OR- the "mv-rm-files"
setting is non-zero, files WILL BE removed from disk as well.
This does NOT apply to the 'forget' command.

Options:
--soft Skip removing files from the check-out.

This supersedes the --hard option.
--hard Remove files from the check-out.
--case-sensitive BOOL Override the case-sensitive setting.
-n|--dry-run If given, display instead of run actions.
--reset Reset the DELETED state of a check-out, such

that all newly-rm'd (but not yet committed)
files are no longer removed. No flags other
than --verbose or --dry-run may be used with
--reset.

--verbose|-v Outputs information about each --reset file.
Only usable with --reset.

See also: addremove, add

8.2. BASIC 55

You can delete groups of files by using wild-cards in their names. Thus if I had
a group of files like com_tr.c, com_rx.c and com_mgmt.c I could remove them
all with:

fossil rm com_*.c

By running a “fossil status” you can see what files will be deleted on the next
commit.

8.2.4 rename or mv

This command is used to rename a file in the repository. This does not rename
files on disk so is usually used after you have renamed files on the disk then
want to change this in the repository.

$ fossil help rename
Usage: fossil mv|rename OLDNAME NEWNAME

or: fossil mv|rename OLDNAME... DIR

Move or rename one or more files or directories within the repository tree.
You can either rename a file or directory or move it to another subdirectory.

The 'mv' command does NOT normally rename or move the files on disk.
This command merely records the fact that file names have changed so
that appropriate notations can be made at the next commit.
However, the default behavior of this command may be overridden via
command line options listed below and/or the 'mv-rm-files' setting.

The 'rename' command never renames or moves files on disk, even when the
command line options and/or the 'mv-rm-files' setting would otherwise
require it to do so.

WARNING: If the "--hard" option is specified -OR- the "mv-rm-files"
setting is non-zero, files WILL BE renamed or moved on disk
as well. This does NOT apply to the 'rename' command.

Options:
--soft Skip moving files within the check-out.

This supersedes the --hard option.
--hard Move files within the check-out.
--case-sensitive BOOL Override the case-sensitive setting.
-n|--dry-run If given, display instead of run actions.

See also: changes, status

Just like add or rm you can use wild cards in the names and rename groups of
files. Like them “fossil status” will show you the current state.

56 CHAPTER 8. FOSSIL COMMANDS

8.2.5 status

The status command is used to show you the current state of your files relative
to the repository. It will show you files added, deleted, and changed. This is
only the condition of files that are already in the repository or under control of
fossil. It also shows from where in the timeline you are checked out and where
your repository is kept.

$ fossil help status
Usage: fossil changes|status ?OPTIONS? ?PATHS ...?

Report the change status of files in the current check-out. If one or
more PATHS are specified, only changes among the named files and
directories are reported. Directories are searched recursively.

... [snipped]

See also: extras, ls

$ fossil status
repository: /home/chris/repos/fossilbook.fossil
local-root: /home/chris/fossilbook/
config-db: /home/chris/.config/fossil.db
checkout: 516e309ea1c86132e3a9be313e8331ec91f255ee 2020-11-21 16:26:12 UTC
parent: 030a38fe4b45b7088faa635982037d2eb05143b6 2020-11-21 16:23:34 UTC
tags: trunk
comment: Use .md file extension in book.md links. (user: chris)
EDITED content/introduction.md
EDITED content/rights.md

The listing above shows where my cloned copy of the repository is kept, where
I am working, and the tags show me that I am checked out of the trunk. Finally
it shows the status of the files: I am working on two of them.

8.2.6 changes

This lists the changed files like status but shows other information that status
does not.

$ fossil help changes
Usage: fossil changes|status ?OPTIONS? ?PATHS ...?

Report the change status of files in the current check-out. If one or
more PATHS are specified, only changes among the named files and
directories are reported. Directories are searched recursively.

The status command is similar to the changes command, except it lacks
several of the options supported by changes and it has its own header

8.2. BASIC 57

and footer information. The header information is a subset of that
shown by the info command, and the footer shows if there are any forks.
Change type classification is always enabled for the status command.

Each line of output is the name of a changed file, with paths shown
according to the "relative-paths" setting, unless overridden by the
--abs-paths or --rel-paths options.

By default, all changed files are selected for display. This behavior
can be overridden by using one or more filter options (listed below),
in which case only files with the specified change type(s) are shown.
As a special case, the --no-merge option does not inhibit this default.
This default shows exactly the set of changes that would be checked
in by the commit command.

If no filter options are used, or if the --merge option is used, the
artifact hash of each merge contributor check-in version is displayed at
the end of the report. The --no-merge option is useful to display the
default set of changed files without the merge contributors.

If change type classification is enabled, each output line starts with
a code describing the file's change type, e.g. EDITED or RENAMED. It
is enabled by default unless exactly one change type is selected. For
the purposes of determining the default, --changed counts as selecting
one change type. The default can be overridden by the --classify or
--no-classify options.

--edited and --updated produce disjoint sets. --updated shows a file
only when it is identical to that of its merge contributor, and the
change type classification is UPDATED_BY_MERGE or UPDATED_BY_INTEGRATE.
If the file had to be merged with any other changes, it is considered
to be merged or conflicted and therefore will be shown by --edited, not
--updated, with types EDITED or CONFLICT. The --changed option can be
used to display the union of --edited and --updated.

--differ is so named because it lists all the differences between the
checked-out version and the check-out directory. In addition to the
default changes (excluding --merge), it lists extra files which (if
ignore-glob is set correctly) may be worth adding. Prior to doing a
commit, it is good practice to check --differ to see not only which
changes would be committed but also if any files should be added.

If both --merge and --no-merge are used, --no-merge has priority. The
same is true of --classify and --no-classify.

The "fossil changes --extra" command is equivalent to "fossil extras".

58 CHAPTER 8. FOSSIL COMMANDS

General options:
--abs-paths Display absolute pathnames.
--rel-paths Display pathnames relative to the current working

directory.
--hash Verify file status using hashing rather than

relying on file mtimes.
--case-sensitive BOOL Override case-sensitive setting.
--dotfiles Include unmanaged files beginning with a dot.
--ignore <CSG> Ignore unmanaged files matching CSG glob patterns.

Options specific to the changes command:
--header Identify the repository if report is non-empty.
-v|--verbose Say "(none)" if the change report is empty.
--classify Start each line with the file's change type.
--no-classify Do not print file change types.

Filter options:
--edited Display edited, merged, and conflicted files.
--updated Display files updated by merge/integrate.
--changed Combination of the above two options.
--missing Display missing files.
--added Display added files.
--deleted Display deleted files.
--renamed Display renamed files.
--conflict Display files having merge conflicts.
--meta Display files with metadata changes.
--unchanged Display unchanged files.
--all Display all managed files, i.e. all of the above.
--extra Display unmanaged files.
--differ Display modified and extra files.
--merge Display merge contributors.
--no-merge Do not display merge contributors.

See also: extras, ls

8.2.7 extras

The extras command is used to find files you have added to your working
directory but are not yet under Fossil control. This is important because if you
move your working directory or others attempt to use the repository they won’t
have these files.

$ fossil help extras
Usage: fossil extras ?OPTIONS? ?PATH1 ...?

8.2. BASIC 59

Print a list of all files in the source tree that are not part of the
current check-out. See also the "clean" command. If paths are specified,
only files in the given directories will be listed.

Files and subdirectories whose names begin with "." are normally
ignored but can be included by adding the --dotfiles option.

Files whose names match any of the glob patterns in the "ignore-glob"
setting are ignored. This setting can be overridden by the --ignore
option, whose CSG argument is a comma-separated list of glob patterns.

Pathnames are displayed according to the "relative-paths" setting,
unless overridden by the --abs-paths or --rel-paths options.

Options:
--abs-paths Display absolute pathnames.
--case-sensitive BOOL Override case-sensitive setting
--dotfiles Include files beginning with a dot (".")
--header Identify the repository if there are extras
--ignore CSG Ignore files matching patterns from the argument
--rel-paths Display pathnames relative to the current working

directory.

See also: changes, clean, status

The –dotfiles option shows you any files starting with “.” that are not under
Fossil control. This would be important if you need those files in your repository.
The last option –ignore allows you to ignore certain files you know don’t belong
in the repository. In the earlier version of this repository, when Lyx was the
editor of choice, there was a file called fossilbook.lyx~ that is a LyX backup file
that was not wanted, as it is temporary. So one can say

fossil extra -{}-ignore *.lyx~

and only get:

$ fossil extra -{}-ignore *.lyx\~

image/basic/help.png

instead of:

$ fossil extra

image/basic/help1.png
fossilbook.lyx~

60 CHAPTER 8. FOSSIL COMMANDS

8.2.8 revert

The revert command is used to take a file back to the value in the repository.
This is useful when you make a error in editing or other mistake.

$ fossil help revert
Usage: fossil revert ?OPTIONS? ?FILE ...?

Revert to the current repository version of FILE, or to
the baseline VERSION specified with -r flag.

If FILE was part of a rename operation, both the original file
and the renamed file are reverted.

Using a directory name for any of the FILE arguments is the same
as using every subdirectory and file beneath that directory.

Revert all files if no file name is provided.

If a file is reverted accidentally, it can be restored using
the "fossil undo" command.

Options:
-r|--revision VERSION Revert given FILE(s) back to given

VERSION

See also: redo, undo, check-out, update

With no parameters it will revert the file to the current revision, see Figure
[fig:status-run]. The -r option allows you to pick any revision from the time line.

8.2.9 update

The update option will update a file or files to match the repository. With
multiple users it should be done before you start working on any files. This
ensures you have the latest version of all the files.

$ fossil help update
Usage: fossil update ?OPTIONS? ?VERSION? ?FILES...?

Change the version of the current check-out to VERSION. Any
uncommitted changes are retained and applied to the new check-out.

The VERSION argument can be a specific version or tag or branch
name. If the VERSION argument is omitted, then the leaf of the
subtree that begins at the current version is used, if there is
only a single leaf. VERSION can also be "current" to select the

8.2. BASIC 61

leaf of the current version or "latest" to select the most recent
check-in.

If one or more FILES are listed after the VERSION then only the
named files are candidates to be updated, and any updates to them
will be treated as edits to the current version. Using a directory
name for one of the FILES arguments is the same as using every
subdirectory and file beneath that directory.

If FILES is omitted, all files in the current check-out are subject
to being updated and the version of the current check-out is changed
to VERSION. Any uncommitted changes are retained and applied to the
new check-out.

The -n or --dry-run option causes this command to do a "dry run".
It prints out what would have happened but does not actually make
any changes to the current check-out or the repository.

The -v or --verbose option prints status information about
unchanged files in addition to those file that actually do change.

Options:
--case-sensitive BOOL Override case-sensitive setting
--debug Print debug information on stdout
--latest Acceptable in place of VERSION, update to

latest version
--force-missing Force update if missing content after sync
-n|--dry-run If given, display instead of run actions
-v|--verbose Print status information about all files
-W|--width WIDTH Width of lines (default is to auto-detect).

Must be more than 20 or 0 (= no limit,
resulting in a single line per entry).

--setmtime Set timestamps of all files to match their
SCM-side times (the timestamp of the last
check-in which modified them).

-K|--keep-merge-files On merge conflict, retain the temporary files
used for merging, named *-baseline, *-original,
and *-merge.

See also: revert

Update has a number of options, first you can tie the update to a particular
version, if not picked then it just uses the latest. Second it can work on a single
files or many files at once. That is you could say

$ fossil update *.c

62 CHAPTER 8. FOSSIL COMMANDS

and it would update all C files.

Since this is a rather large set of changes it has a special “dry run” mode. If you
add -n on the command it will just print out what will be done but not do it.
This is very useful to do this trial if you are unsure what might happen. The -v
command (which can be used with -n or alone) prints out the action for each
file even if it does nothing.

�
The update command can be used to do a kind of cherrypick-
ing. When you have a branch (or just some other version) and
want to only merge a single file of that branch/version into the
current check-out, you can do fossil update other_branch
other_file. This will bring a copy of that other file into the cur-
rent branch/version. However, this will not leave any trace in the
timeline. Further, you will have to fossil add that file specifically
yourself so it gets committed in the next fossil commit.

The ---dry-run option is special as it is not able to detect changes that have
been done in another repository that have not been pulled into the local repos-
itory. The help text states that no changes are made to the current check-out
or the repository. So, a dry run has no way to determine whether something
changed in an “up-stream” repository and thus whether an update would
lead to a conflict. Without a dry run, Fossil would typically make a fossil
pull before the update of the check-out. Thus, if you want to have a dry run
and see everything, you must do a fossil pull before the fossil update
--dry-run.

8.2.10 check-out or co

This command is similar to update.

$ fossil help check-out
Usage: fossil check-out ?VERSION | --latest? ?OPTIONS?

or: fossil co ?VERSION | --latest? ?OPTIONS?

Check out a version specified on the command-line. This command
will abort if there are edited files in the current check-out unless
the --force option appears on the command-line. The --keep option
leaves files on disk unchanged, except the manifest and manifest.uuid
files.

The --latest flag can be used in place of VERSION to check-out the
latest version in the repository.

8.2. BASIC 63

Options:
--force Ignore edited files in the current check-out
--keep Only update the manifest and manifest.uuid files
--force-missing Force check-out even if content is missing
--setmtime Set timestamps of all files to match their SCM-side

times (the timestamp of the last check-in which modified
them).

See also: update

8.2.11 undo

This is used to undo the last update, merge, or revert operation.

$ fossil help undo
Usage: fossil undo ?OPTIONS? ?FILENAME...?

or: fossil redo ?OPTIONS? ?FILENAME...?

The undo command reverts the changes caused by the previous command
if the previous command is one of the following:

* fossil update

* fossil merge

* fossil revert

* fossil stash pop

* fossil stash apply

* fossil stash drop

* fossil stash goto

* fossil clean (*see note below*)

Note: The "fossil clean" command only saves state for files less than
10MiB in size and so if fossil clean deleted files larger than that,
then "fossil undo" will not recover the larger files.

If FILENAME is specified then restore the content of the named
file(s) but otherwise leave the update or merge or revert in effect.
The redo command undoes the effect of the most recent undo.

If the -n|--dry-run option is present, no changes are made and instead
the undo or redo command explains what actions the undo or redo would
have done had the -n|--dry-run been omitted.

If the most recent command is not one of those listed as undoable,
then the undo command might try to restore the state to be what it was
prior to the last undoable command, or it might be a no-op. If in
doubt about what the undo command will do, first run it with the -n
option.

64 CHAPTER 8. FOSSIL COMMANDS

A single level of undo/redo is supported. The undo/redo stack
is cleared by the commit and check-out commands. Other commands may
or may not clear the undo stack.

Future versions of Fossil might add new commands to the set of commands
that are undoable.

Options:
-n|--dry-run do not make changes but show what would be done

See also: commit, status

It acts on a single file or files if specified, otherwise if no file given, it undoes all
of the last changes.

8.2.12 diff

The diff command is used to produce a text listing of the difference of a file in
the working directory and that same file in the repository. If you don’t specify
a file it will show the differences between all the changed files in the working
directory vs the repository. If you use the –from and –to options you can specify
which versions to check and to compare between two different versions in the
repository. Not using the –to means compare with the working directory.

If you have configured an external diff program it will be used unless you use
the -i option which uses the diff built into Fossil.

$ fossil help diff
Usage: fossil diff|gdiff ?OPTIONS? ?FILE1? ?FILE2 ...?

Show the difference between the current version of each of the FILEs
specified (as they exist on disk) and that same file as it was checked
out. Or if the FILE arguments are omitted, show the unsaved changes
currently in the working check-out.

If the "--from VERSION" or "-r VERSION" option is used it specifies
the source check-in for the diff operation. If not specified, the
source check-in is the base check-in for the current check-out.

If the "--to VERSION" option appears, it specifies the check-in from
which the second version of the file or files is taken. If there is
no "--to" option then the (possibly edited) files in the current check-out
are used.

The "--checkin VERSION" option shows the changes made by
check-in VERSION relative to its primary parent.

8.2. BASIC 65

The "-i" command-line option forces the use of the internal diff logic
rather than any external diff program that might be configured using
the "setting" command. If no external diff program is configured, then
the "-i" option is a no-op. The "-i" option converts "gdiff" into "diff".

The "-N" or "--new-file" option causes the complete text of added or
deleted files to be displayed.

The "--diff-binary" option enables or disables the inclusion of binary files
when using an external diff program.

The "--binary" option causes files matching the glob PATTERN to be treated
as binary when considering if they should be used with external diff program.
This option overrides the "binary-glob" setting.

Options:
--binary PATTERN Treat files that match the glob PATTERN

as binary
--branch BRANCH Show diff of all changes on BRANCH
--brief Show filenames only
--checkin VERSION Show diff of all changes in VERSION
--command PROG External diff program. Overrides "diff-command"
--context|-c N Use N lines of context
--diff-binary BOOL Include binary files with external commands
--exec-abs-paths Force absolute path names on external commands
--exec-rel-paths Force relative path names on external commands
--from|-r VERSION Select VERSION as source for the diff
--internal|-i Use internal diff logic
--new-file|-N Show complete text of added and deleted files
--numstat Show only the number of lines delete and added
--side-by-side|-y Side-by-side diff
--strip-trailing-cr Strip trailing CR
--tclsh PATH Tcl/Tk used for --tk (default: "tclsh")
--tk Launch a Tcl/Tk GUI for display
--to VERSION Select VERSION as target for the diff
--undo Diff against the "undo" buffer
--unified Unified diff
-v|--verbose Output complete text of added or deleted files
-w|--ignore-all-space Ignore white space when comparing lines
-W|--width N Width of lines in side-by-side diff
-Z|--ignore-trailing-space Ignore changes to end-of-line whitespace

66 CHAPTER 8. FOSSIL COMMANDS

8.2.13 gdiff

This is the same as the diff command but uses (if configured) a graphical diff
program you have on your system. See the settings command for details on
how to set the graphical diff program.

$ fossil help gdiff
Usage: fossil diff|gdiff ?OPTIONS? ?FILE1? ?FILE2 ...?

Show the difference between the current version of each of the FILEs
specified (as they exist on disk) and that same file as it was checked
out. Or if the FILE arguments are omitted, show the unsaved changes
currently in the working check-out.

If the "--from VERSION" or "-r VERSION" option is used it specifies
the source check-in for the diff operation. If not specified, the
source check-in is the base check-in for the current check-out.

If the "--to VERSION" option appears, it specifies the check-in from
which the second version of the file or files is taken. If there is
no "--to" option then the (possibly edited) files in the current check-out
are used.

The "--checkin VERSION" option shows the changes made by
check-in VERSION relative to its primary parent.

The "-i" command-line option forces the use of the internal diff logic
rather than any external diff program that might be configured using
the "setting" command. If no external diff program is configured, then
the "-i" option is a no-op. The "-i" option converts "gdiff" into "diff".

The "-N" or "--new-file" option causes the complete text of added or
deleted files to be displayed.

The "--diff-binary" option enables or disables the inclusion of binary files
when using an external diff program.

The "--binary" option causes files matching the glob PATTERN to be treated
as binary when considering if they should be used with external diff program.
This option overrides the "binary-glob" setting.

Options:
--binary PATTERN Treat files that match the glob PATTERN

as binary
--branch BRANCH Show diff of all changes on BRANCH
--brief Show filenames only

8.2. BASIC 67

--checkin VERSION Show diff of all changes in VERSION
--command PROG External diff program. Overrides "diff-command"
--context|-c N Use N lines of context
--diff-binary BOOL Include binary files with external commands
--exec-abs-paths Force absolute path names on external commands
--exec-rel-paths Force relative path names on external commands
--from|-r VERSION Select VERSION as source for the diff
--internal|-i Use internal diff logic
--new-file|-N Show complete text of added and deleted files
--numstat Show only the number of lines delete and added
--side-by-side|-y Side-by-side diff
--strip-trailing-cr Strip trailing CR
--tclsh PATH Tcl/Tk used for --tk (default: "tclsh")
--tk Launch a Tcl/Tk GUI for display
--to VERSION Select VERSION as target for the diff
--undo Diff against the "undo" buffer
--unified Unified diff
-v|--verbose Output complete text of added or deleted files
-w|--ignore-all-space Ignore white space when comparing lines
-W|--width N Width of lines in side-by-side diff
-Z|--ignore-trailing-space Ignore changes to end-of-line whitespace

8.2.14 ui

The ui command is used to start Fossil in a local webserver. The –port option is
used to specify the port it uses, by default it uses 8080. It should automatically
start the system’s web browser and it will come up with the repository web
page. If run within a working directory it will bring up the web page for that
repository. If run outside the working directory you can specify the repository
on the command line.

$ fossil help ui
Usage: fossil server ?OPTIONS? ?REPOSITORY?

or: fossil ui ?OPTIONS? ?REPOSITORY?

Open a socket and begin listening and responding to HTTP requests on
TCP port 8080, or on any other TCP port defined by the -P or
--port option. The optional argument is the name of the repository.
The repository argument may be omitted if the working directory is
within an open check-out.

The "ui" command automatically starts a web browser after initializing
the web server. The "ui" command also binds to 127.0.0.1 and so will
only process HTTP traffic from the local machine.

The REPOSITORY can be a directory (aka folder) that contains one or

68 CHAPTER 8. FOSSIL COMMANDS

more repositories with names ending in ".fossil". In this case, a
prefix of the URL pathname is used to search the directory for an
appropriate repository. To thwart mischief, the pathname in the URL must
contain only alphanumerics, "_", "/", "-", and ".", and no "-" may
occur after "/", and every "." must be surrounded on both sides by
alphanumerics. Any pathname that does not satisfy these constraints
results in a 404 error. Files in REPOSITORY that match the comma-separated
list of glob patterns given by --files and that have known suffixes
such as ".txt" or ".html" or ".jpeg" and do not match the pattern
"*.fossil*" will be served as static content. With the "ui" command,
the REPOSITORY can only be a directory if the --notfound option is
also present.

For the special case REPOSITORY name of "/", the list global configuration
database is consulted for a list of all known repositories. The --repolist
option is implied by this special case. See also the "fossil all ui"
command.

By default, the "ui" command provides full administrative access without
having to log in. This can be disabled by turning off the "localauth"
setting. Automatic login for the "server" command is available if the
--localauth option is present and the "localauth" setting is off and the
connection is from localhost. The "ui" command also enables --repolist
by default.

Options:
--baseurl URL Use URL as the base (useful for reverse proxies)
--create Create a new REPOSITORY if it does not already exist
--extroot DIR Document root for the /ext extension mechanism
--files GLOBLIST Comma-separated list of glob patterns for static files
--localauth enable automatic login for requests from localhost
--localhost listen on 127.0.0.1 only (always true for "ui")
--https Indicates that the input is coming through a reverse

proxy that has already translated HTTPS into HTTP.
--jsmode MODE Determine how JavaScript is delivered with pages.

Mode can be one of:
inline All JavaScript is inserted inline at

the end of the HTML file.
separate Separate HTTP requests are made for

each JavaScript file.
bundled One single separate HTTP fetches all

JavaScript concatenated together.
Depending on the needs of any given page, inline
and bundled modes might result in a single
amalgamated script or several, but both approaches
result in fewer HTTP requests than the separate mode.

8.2. BASIC 69

--max-latency N Do not let any single HTTP request run for more than N
seconds (only works on unix)

--nocompress Do not compress HTTP replies
--nojail Drop root privileges but do not enter the chroot jail
--nossl signal that no SSL connections are available (Always

set by default for the "ui" command)
--notfound URL Redirect
--page PAGE Start "ui" on PAGE. ex: --page "timeline?y=ci"
-P|--port TCPPORT listen to request on port TCPPORT
--th-trace trace TH1 execution (for debugging purposes)
--repolist If REPOSITORY is dir, URL "/" lists repos.
--scgi Accept SCGI rather than HTTP
--skin LABEL Use override skin LABEL
--usepidkey Use saved encryption key from parent process. This is

only necessary when using SEE on Windows.

See also: cgi, http, winsrv

8.2.15 server

This is a more powerful version of the ui command. This allows you to have
multiple repositories supported by a single running Fossil webserver. This way
you start the server and instead of a paricular repository you specify a directory
where a number of repositories reside (all having the extension .fossil) then you
can open and use any of them.

$ fossil help server
Usage: fossil server ?OPTIONS? ?REPOSITORY?

or: fossil ui ?OPTIONS? ?REPOSITORY?

Open a socket and begin listening and responding to HTTP requests on
TCP port 8080, or on any other TCP port defined by the -P or
--port option. The optional argument is the name of the repository.
The repository argument may be omitted if the working directory is
within an open check-out.

The "ui" command automatically starts a web browser after initializing
the web server. The "ui" command also binds to 127.0.0.1 and so will
only process HTTP traffic from the local machine.

The REPOSITORY can be a directory (aka folder) that contains one or
more repositories with names ending in ".fossil". In this case, a
prefix of the URL pathname is used to search the directory for an
appropriate repository. To thwart mischief, the pathname in the URL must
contain only alphanumerics, "_", "/", "-", and ".", and no "-" may
occur after "/", and every "." must be surrounded on both sides by

70 CHAPTER 8. FOSSIL COMMANDS

alphanumerics. Any pathname that does not satisfy these constraints
results in a 404 error. Files in REPOSITORY that match the comma-separated
list of glob patterns given by --files and that have known suffixes
such as ".txt" or ".html" or ".jpeg" and do not match the pattern
"*.fossil*" will be served as static content. With the "ui" command,
the REPOSITORY can only be a directory if the --notfound option is
also present.

For the special case REPOSITORY name of "/", the list global configuration
database is consulted for a list of all known repositories. The --repolist
option is implied by this special case. See also the "fossil all ui"
command.

By default, the "ui" command provides full administrative access without
having to log in. This can be disabled by turning off the "localauth"
setting. Automatic login for the "server" command is available if the
--localauth option is present and the "localauth" setting is off and the
connection is from localhost. The "ui" command also enables --repolist
by default.

Options:
--baseurl URL Use URL as the base (useful for reverse proxies)
--create Create a new REPOSITORY if it does not already exist
--extroot DIR Document root for the /ext extension mechanism
--files GLOBLIST Comma-separated list of glob patterns for static files
--localauth enable automatic login for requests from localhost
--localhost listen on 127.0.0.1 only (always true for "ui")
--https Indicates that the input is coming through a reverse

proxy that has already translated HTTPS into HTTP.
--jsmode MODE Determine how JavaScript is delivered with pages.

Mode can be one of:
inline All JavaScript is inserted inline at

the end of the HTML file.
separate Separate HTTP requests are made for

each JavaScript file.
bundled One single separate HTTP fetches all

JavaScript concatenated together.
Depending on the needs of any given page, inline
and bundled modes might result in a single
amalgamated script or several, but both approaches
result in fewer HTTP requests than the separate mode.

--max-latency N Do not let any single HTTP request run for more than N
seconds (only works on unix)

--nocompress Do not compress HTTP replies
--nojail Drop root privileges but do not enter the chroot jail
--nossl signal that no SSL connections are available (Always

8.2. BASIC 71

set by default for the "ui" command)
--notfound URL Redirect
--page PAGE Start "ui" on PAGE. ex: --page "timeline?y=ci"
-P|--port TCPPORT listen to request on port TCPPORT
--th-trace trace TH1 execution (for debugging purposes)
--repolist If REPOSITORY is dir, URL "/" lists repos.
--scgi Accept SCGI rather than HTTP
--skin LABEL Use override skin LABEL
--usepidkey Use saved encryption key from parent process. This is

only necessary when using SEE on Windows.

See also: cgi, http, winsrv

8.2.16 commit or ci

This is the command used to put the current changes in the working directory
into the repository, giving this a new version and updating the timeline.

$ fossil help commit
Usage: fossil commit ?OPTIONS? ?FILE...?

or: fossil ci ?OPTIONS? ?FILE...?

Create a new version containing all of the changes in the current
check-out. You will be prompted to enter a check-in comment unless
the comment has been specified on the command-line using "-m" or a
file containing the comment using -M. The editor defined in the
"editor" fossil option (see fossil help set) will be used, or from
the "VISUAL" or "EDITOR" environment variables (in that order) if
no editor is set.

All files that have changed will be committed unless some subset of
files is specified on the command line.

The --branch option followed by a branch name causes the new
check-in to be placed in a newly-created branch with the name
passed to the --branch option.

Use the --branchcolor option followed by a color name (ex:
'#ffc0c0') to specify the background color of entries in the new
branch when shown in the web timeline interface. The use of
the --branchcolor option is not recommended. Instead, let Fossil
choose the branch color automatically.

The --bgcolor option works like --branchcolor but only sets the
background color for a single check-in. Subsequent check-ins revert
to the default color.

72 CHAPTER 8. FOSSIL COMMANDS

A check-in is not permitted to fork unless the --allow-fork option
appears. An empty check-in (i.e. with nothing changed) is not
allowed unless the --allow-empty option appears. A check-in may not
be older than its ancestor unless the --allow-older option appears.
If any of files in the check-in appear to contain unresolved merge
conflicts, the check-in will not be allowed unless the
--allow-conflict option is present. In addition, the entire
check-in process may be aborted if a file contains content that
appears to be binary, Unicode text, or text with CR/LF line endings
unless the interactive user chooses to proceed. If there is no
interactive user or these warnings should be skipped for some other
reason, the --no-warnings option may be used. A check-in is not
allowed against a closed leaf.

If a commit message is blank, you will be prompted:
("continue (y/N)?") to confirm you really want to commit with a
blank commit message. The default value is "N", do not commit.

The --private option creates a private check-in that is never synced.
Children of private check-ins are automatically private.

The --tag option applies the symbolic tag name to the check-in.

The --hash option detects edited files by computing each file's
artifact hash rather than just check-ing for changes to its size or mtime.

Options:
--allow-conflict allow unresolved merge conflicts
--allow-empty allow a commit with no changes
--allow-fork allow the commit to fork
--allow-older allow a commit older than its ancestor
--baseline use a baseline manifest in the commit process
--bgcolor COLOR apply COLOR to this one check-in only
--branch NEW-BRANCH-NAME check in to this new branch
--branchcolor COLOR apply given COLOR to the branch
--close close the branch being committed
--date-override DATETIME DATE to use instead of 'now'
--delta use a delta manifest in the commit process
--hash verify file status using hashing rather

than relying on file mtimes
--integrate close all merged-in branches
-m|--comment COMMENT-TEXT use COMMENT-TEXT as commit comment
-M|--message-file FILE read the commit comment from given file
--mimetype MIMETYPE mimetype of check-in comment
-n|--dry-run If given, display instead of run actions

8.3. MAINTENANCE 73

--no-prompt This option disables prompting the user for
input and assumes an answer of 'No' for every
question.

--no-warnings omit all warnings about file contents
--no-verify do not run before-commit hooks
--nosign do not attempt to sign this commit with gpg
--override-lock allow a check-in even though parent is locked
--private do not sync changes and their descendants
--tag TAG-NAME assign given tag TAG-NAME to the check-in
--trace debug tracing.
--user-override USER USER to use instead of the current default

DATETIME may be "now" or "YYYY-MM-DDTHH:MM:SS.SSS". If in
year-month-day form, it may be truncated, the "T" may be replaced by
a space, and it may also name a timezone offset from UTC as "-HH:MM"
(westward) or "+HH:MM" (eastward). Either no timezone suffix or "Z"
means UTC.

See also: branch, changes, update, extras, sync

It’s a very good idea to always put a comment (-comment or -m) text on any
commit. This way you get documentation in the timeline.

8.3 Maintenance

These commands you will probably use less often since the actions they perform
are not needed in normal operation. You will have to use them and referring
here or to fossil help will probably be required before use. Some of them like
new or clone are only needed when you start a repository. Others like rebuild
or reconstruct are only needed to fix or update a repository.

8.3.1 new

This command is used to create a new repository.

$ fossil help new
Usage: fossil new ?OPTIONS? FILENAME

or: fossil init ?OPTIONS? FILENAME

Create a repository for a new project in the file named FILENAME.
This command is distinct from "clone". The "clone" command makes
a copy of an existing project. This command starts a new project.

By default, your current login name is used to create the default
admin user. This can be overridden using the -A|--admin-user
parameter.

74 CHAPTER 8. FOSSIL COMMANDS

By default, all settings will be initialized to their default values.
This can be overridden using the --template parameter to specify a
repository file from which to copy the initial settings. When a template
repository is used, almost all of the settings accessible from the setup
page, either directly or indirectly, will be copied. Normal users and
their associated permissions will not be copied; however, the system
default users "anonymous", "nobody", "reader", "developer", and their
associated permissions will be copied.

Options:
--template FILE Copy settings from repository file
--admin-user|-A USERNAME Select given USERNAME as admin user
--date-override DATETIME Use DATETIME as time of the initial check-in
--sha1 Use an initial hash policy of "sha1"

DATETIME may be "now" or "YYYY-MM-DDTHH:MM:SS.SSS". If in
year-month-day form, it may be truncated, the "T" may be replaced by
a space, and it may also name a timezone offset from UTC as "-HH:MM"
(westward) or "+HH:MM" (eastward). Either no timezone suffix or "Z"
means UTC.

See also: clone

The file name specifies the new repository name. The options provided allow
you to specify the admin user name if you want it to be different than your
current login and the starting date if you want it to be different than now.

8.3.2 clone

The clone command is used to create your own local version of the master
repository. If you are supporting multiple users via a network accessible version
of the original repository (see Section[sub:Server-Setup]), then this command
will copy that repository to your machine. Also it will make a link between your
copy and the master, so that changes made in your copy will be propagated to
the master.

$ fossil help clone
Usage: fossil clone ?OPTIONS? URI ?FILENAME?

Make a clone of a repository specified by URI in the local
file named FILENAME. If FILENAME is omitted, then an appropriate
filename is deduced from last element of the path in the URL.

URI may be one of the following forms ([...] denotes optional elements):

* HTTP/HTTPS protocol:

8.3. MAINTENANCE 75

http[s]://[userid[:password]@]host[:port][/path]

* SSH protocol:

ssh://[userid@]host[:port]/path/to/repo.fossil[?fossil=path/fossil.exe]

* Filesystem:

[file://]path/to/repo.fossil

For ssh and filesystem, path must have an extra leading
'/' to use an absolute path.

Use %HH escapes for special characters in the userid and
password. For example "%40" in place of "@", "%2f" in place
of "/", and "%3a" in place of ":".

Note that in Fossil (in contrast to some other DVCSes) a repository
is distinct from a check-out. Cloning a repository is not the same thing
as opening a repository. This command always clones the repository. This
command might also open the repository, but only if the --no-open option
is omitted and either the --workdir option is included or the FILENAME
argument is omitted. Use the separate open command to open a
repository that was previously cloned and already exists on the
local machine.

By default, the current login name is used to create the default
admin user for the new clone. This can be overridden using
the -A|--admin-user parameter.

Options:
--admin-user|-A USERNAME Make USERNAME the administrator
--httpauth|-B USER:PASS Add HTTP Basic Authorization to requests
--nocompress Omit extra delta compression
--no-open Clone only. Do not open a check-out.
--once Don't remember the URI.
--private Also clone private branches
--save-http-password Remember the HTTP password without asking
--ssh-command|-c SSH Use SSH as the "ssh" command
--ssl-identity FILENAME Use the SSL identity if requested by the server
-u|--unversioned Also sync unversioned content
-v|--verbose Show more statistics in output
--workdir DIR Also open a check-out in DIR

See also: init, open

76 CHAPTER 8. FOSSIL COMMANDS

As with create, you can specify the admin user for this clone with an option.
The URL for the master repository is of the form:

https://user:password@domain

Where user and password are for a valid user of the selected repository. It is
best to check the path with a browser before doing the clone. Make sure you
can reach it, for example the repository for this book is:

https://www.fossil-scm.org/schimpf-book/home

Putting that into a browser should get you the home page for this book. (See
Figure [fig:Web-access-to]). After you have verified that, then running the clone
command should work.

Don’t forget (as I always do) to put in the file name for the local repository, (see
FILENAME above)

8.3.3 open

The open command is used to copy the files in a repository to a working
directory. Doing this allows you to build or modify the product. The command
also links this working directory to the repository so commits will go into the
repository.

$ fossil help open
Usage: fossil open REPOSITORY ?VERSION? ?OPTIONS?

Open a new connection to the repository name REPOSITORY. A check-out
for the repository is created with its root at the current working
directory, or in DIR if the "--workdir DIR" is used. If VERSION is
specified then that version is checked out. Otherwise the most recent
check-in on the main branch (usually "trunk") is used.

REPOSITORY can be the filename for a repository that already exists on the
local machine or it can be a URI for a remote repository. If REPOSITORY
is a URI in one of the formats recognized by the clone command, then
remote repo is first cloned, then the clone is opened. The clone will be
stored in the current directory, or in DIR if the "--repodir DIR" option
is used. The name of the clone will be taken from the last term of the URI.
For "http:" and "https:" URIs, you can append an extra term to the end of
the URI to get any repository name you like. For example:

fossil open https://fossil-scm.org/home/new-name

The base URI for cloning is "https://fossil-scm.org/home". The extra
"new-name" term means that the cloned repository will be called
"new-name.fossil".

8.3. MAINTENANCE 77

Options:
--empty Initialize check-out as being empty, but still connected

with the local repository. If you commit this check-out,
it will become a new "initial" commit in the repository.

-f|--force Continue with the open even if the working directory is
not empty.

--force-missing Force opening a repository with missing content
--keep Only modify the manifest and manifest.uuid files
--nested Allow opening a repository inside an opened check-out
--repodir DIR If REPOSITORY is a URI that will be cloned, store

the clone in DIR rather than in "."
--setmtime Set timestamps of all files to match their SCM-side

times (the timestamp of the last check-in which modified
them).

--workdir DIR Use DIR as the working directory instead of ".". The DIR
directory is created if it does not exist.

See also: close, clone

If you have multiple users or have a branched repository then it is probably
wise to specify the particular version you want. When you run this it will create
all the files and directories in the repository in your work area. In addition the
files FOSSIL, manifiest and manifest.uuid will be created by Fossil.

You can have multiple open connections to the same repository at the same
time. Every open connection just needs to be in its own separate working
directory. This is very useul when you have many branches and do not want to
commit your work just to switch over to another branch and continue or check
something there. Just create a new open connection in another directory and
you can cd between them and work on multiple branches at the same time. If
you want to know where all the open check-outs of your repository are located,
use fossil info -v.

8.3.4 close

This is the opposite of open, in that it breaks the connection between this
working directory and the Fossil repository.

$ fossil help close
Usage: fossil close ?OPTIONS?

The opposite of "open". Close the current database connection.
Require a -f or --force flag if there are unsaved changes in the
current check-out or if there is non-empty stash.

Options:
--force|-f necessary to close a check out with uncommitted changes

78 CHAPTER 8. FOSSIL COMMANDS

See also: open

This is useful if you need to abandon the current working directory. Fossil will
not let you do this if there are changes between the current directory and the
repository. With the force flag you can explicitly cut the connection even if there
are changes.

8.3.5 version

This command is used to show the current version of fossil.

$ fossil help version
Usage: fossil version ?-verbose|-v?

Print the source code version number for the fossil executable.
If the verbose option is specified, additional details will
be output about what optional features this binary was compiled
with

$ fossil version
This is fossil version 2.14 [939a13d94f] 2020-11-20 19:28:05 UTC

The above figure shows the help and example of running the command. When
you have problems with fossil it is very important to have this version informa-
tion. You can then inquire of the Fossil news group about this problem and with
the version information they can easily tell you if the problem is fixed already
or is new.

8.3.6 rebuild

If you update your copy of Fossil you will want to run this command against
all the repositories you have. This will automatically update them to the new
version of Fossil.

$ fossil help rebuild
Usage: fossil rebuild ?REPOSITORY? ?OPTIONS?

Reconstruct the named repository database from the core
records. Run this command after updating the fossil
executable in a way that changes the database schema.

Options:
--analyze Run ANALYZE on the database after rebuilding
--cluster Compute clusters for unclustered artifacts
--compress Strive to make the database as small as possible
--compress-only Skip the rebuilding step. Do --compress only

8.3. MAINTENANCE 79

--deanalyze Remove ANALYZE tables from the database
--force Force the rebuild to complete even if errors are seen
--ifneeded Only do the rebuild if it would change the schema version
--index Always add in the full-text search index
--noverify Skip the verification of changes to the BLOB table
--noindex Always omit the full-text search index
--pagesize N Set the database pagesize to N. (512..65536 and power of 2)
--quiet Only show output if there are errors
--randomize Scan artifacts in a random order
--stats Show artifact statistics after rebuilding
--vacuum Run VACUUM on the database after rebuilding
--wal Set Write-Ahead-Log journalling mode on the database

8.3.7 repack

This command was added in version 2.21. It is used to reconstruct a repository
database from the core records and is typically run after updating the Fossil
executable in a way that changes the database schema.

. . . to be continued . . .

8.3.8 all

This command is actually a modifier and when used before certain commands
will run them on all the repositories.

$ fossil help all
Usage: fossil all SUBCOMMAND ...

The ~/.fossil file records the location of all repositories for a
user. This command performs certain operations on all repositories
that can be useful before or after a period of disconnected operation.

On Win32 systems, the file is named "_fossil" and is located in
%LOCALAPPDATA%, %APPDATA% or %HOMEPATH%.

Available operations are:

backup Backup all repositories. The argument must the name of
a directory into which all backup repositories are written.

cache Manages the cache used for potentially expensive web
pages. Any additional arguments are passed on verbatim
to the cache command.

changes Shows all local check-outs that have uncommitted changes.
This operation has no additional options.

80 CHAPTER 8. FOSSIL COMMANDS

clean Delete all "extra" files in all local check-outs. Extreme
caution should be exercised with this command because its
effects cannot be undone. Use of the --dry-run option to
carefully review the local check-outs to be operated upon
and the --whatif option to carefully review the files to
be deleted beforehand is highly recommended. The command
line options supported by the clean command itself, if any
are present, are passed along verbatim.

config Only the "config pull AREA" command works.

dbstat Run the "dbstat" command on all repositories.

extras Shows "extra" files from all local check-outs. The command
line options supported by the extra command itself, if any
are present, are passed along verbatim.

fts-config Run the "fts-config" command on all repositories.

info Run the "info" command on all repositories.

pull Run a "pull" operation on all repositories. Only the
--verbose option is supported.

push Run a "push" on all repositories. Only the --verbose
option is supported.

rebuild Rebuild on all repositories. The command line options
supported by the rebuild command itself, if any are
present, are passed along verbatim. The --force and
--randomize options are not supported.

sync Run a "sync" on all repositories. Only the --verbose
and --unversioned options are supported.

set|unset Run the "setting", "set", or "unset" commands on all
repositories. These command are particularly useful in
conjunction with the "max-loadavg" setting which cannot
otherwise be set globally.

server Run the "ui" or "server" commands on all repositories.
ui The root URI gives a listing of all repos.

In addition, the following maintenance operations are supported:

8.3. MAINTENANCE 81

add Add all the repositories named to the set of repositories
tracked by Fossil. Normally Fossil is able to keep up with
this list by itself, but sometimes it can benefit from this
hint if you rename repositories.

ignore Arguments are repositories that should be ignored by
subsequent clean, extras, list, pull, push, rebuild, and
sync operations. The -c|--ckout option causes the listed
local check-outs to be ignored instead.

list | ls Display the location of all repositories. The -c|--ckout
option causes all local check-outs to be listed instead.

Repositories are automatically added to the set of known repositories
when one of the following commands are run against the repository:
clone, info, pull, push, or sync. Even previously ignored repositories
are added back to the list of repositories by these commands.

Options:
--dry-run If given, display instead of run actions.
--showfile Show the repository or check-out being operated upon.
--stop-on-error Halt immediately if any subprocess fails.

8.3.9 push

This command will push changes in the local repository to the master or remote
repository.

$ fossil help push
Usage: fossil push ?URL? ?options?

Push all sharable changes from the local repository to a remote
repository. Sharable changes include public check-ins, edits to
wiki pages, tickets, and tech-notes, as well as forum content. Use
--private to also push private branches. Use the "configuration
push" command to push website configuration details.

If URL is not specified, then the URL from the most recent clone, push,
pull, remote, or sync command is used. See "fossil help clone" for
details on the URL formats.

Options:

-B|--httpauth USER:PASS Credentials for the simple HTTP auth protocol,
if required by the remote website

82 CHAPTER 8. FOSSIL COMMANDS

--ipv4 Use only IPv4, not IPv6
--once Do not remember URL for subsequent syncs
--proxy PROXY Use the specified HTTP proxy
--private Push private branches too
-R|--repository REPO Local repository to push from
--ssl-identity FILE Local SSL credentials, if requested by remote
--ssh-command SSH Use SSH as the "ssh" command
-v|--verbose Additional (debugging) output
--verily Exchange extra information with the remote

to ensure no content is overlooked

See also: clone, config, pull, remote, sync

8.3.10 pull

This command will copy changes from the remote repository to the local reposi-
tory. You could then use update to apply these changes to checked out files.

$ fossil help pull
Usage: fossil pull ?URL? ?options?

Pull all sharable changes from a remote repository into the local
repository. Sharable changes include public check-ins, edits to
wiki pages, tickets, and tech-notes, as well as forum content. Add
the --private option to pull private branches. Use the
"configuration pull" command to pull website configuration details.

If URL is not specified, then the URL from the most recent clone, push,
pull, remote, or sync command is used. See "fossil help clone" for
details on the URL formats.

Options:

-B|--httpauth USER:PASS Credentials for the simple HTTP auth protocol,
if required by the remote website

--from-parent-project Pull content from the parent project
--ipv4 Use only IPv4, not IPv6
--once Do not remember URL for subsequent syncs
--private Pull private branches too
--project-code CODE Use CODE as the project code
--proxy PROXY Use the specified HTTP proxy
-R|--repository REPO Local repository to pull into
--ssl-identity FILE Local SSL credentials, if requested by remote
--ssh-command SSH Use SSH as the "ssh" command
-v|--verbose Additional (debugging) output
--verily Exchange extra information with the remote

8.3. MAINTENANCE 83

to ensure no content is overlooked

See also: clone, config, push, remote, sync

8.3.11 sync

This command is used to sync a remote copy with the original copy of the
repository, it does both a push and pull. This can also be used to switch a local
repository to a different main repository by specifying the URL of a remote
repository. If you want to run the update command with -n where it does a dry
run, this does not do a sync first so doing fossil sync then fossil update -n will
do that for you.

$ fossil help sync
Usage: fossil sync ?URL? ?options?

Synchronize all sharable changes between the local repository and a
remote repository. Sharable changes include public check-ins and
edits to wiki pages, tickets, and technical notes.

If URL is not specified, then the URL from the most recent clone, push,
pull, remote, or sync command is used. See "fossil help clone" for
details on the URL formats.

Options:

-B|--httpauth USER:PASS Credentials for the simple HTTP auth protocol,
if required by the remote website

--ipv4 Use only IPv4, not IPv6
--once Do not remember URL for subsequent syncs
--proxy PROXY Use the specified HTTP proxy
--private Sync private branches too
-R|--repository REPO Local repository to sync with
--ssl-identity FILE Local SSL credentials, if requested by remote
--ssh-command SSH Use SSH as the "ssh" command
-u|--unversioned Also sync unversioned content
-v|--verbose Additional (debugging) output
--verily Exchange extra information with the remote

to ensure no content is overlooked

See also: clone, pull, push, remote

84 CHAPTER 8. FOSSIL COMMANDS

�
Wen you want to also sync unversioned content, you need to have
the corresponding user privilige (capability ‘y’). The command will
not tell you when you do not have this privilige and the sync will
then silently fail.

8.3.12 clean

This call can be used to remove all the “extra” files in a source tree. This is useful
if you wish to tidy up a source tree or to do a clean build.

$ fossil help clean
Usage: fossil clean ?OPTIONS? ?PATH ...?

Delete all "extra" files in the source tree. "Extra" files are files
that are not officially part of the check-out. If one or more PATH
arguments appear, then only the files named, or files contained with
directories named, will be removed.

If the --prompt option is used, prompts are issued to confirm the
permanent removal of each file. Otherwise, files are backed up to the
undo buffer prior to removal, and prompts are issued only for files
whose removal cannot be undone due to their large size or due to
--disable-undo being used.

The --force option treats all prompts as having been answered yes,
whereas --no-prompt treats them as having been answered no.

Files matching any glob pattern specified by the --clean option are
deleted without prompting, and the removal cannot be undone.

No file that matches glob patterns specified by --ignore or --keep will
ever be deleted. Files and subdirectories whose names begin with "."
are automatically ignored unless the --dotfiles option is used.

The default values for --clean, --ignore, and --keep are determined by
the (versionable) clean-glob, ignore-glob, and keep-glob settings.

The --verily option ignores the keep-glob and ignore-glob settings and
turns on --force, --emptydirs, --dotfiles, and --disable-undo. Use the
--verily option when you really want to clean up everything. Extreme
care should be exercised when using the --verily option.

Options:
--allckouts Check for empty directories within any check-outs

that may be nested within the current one. This

8.3. MAINTENANCE 85

option should be used with great care because the
empty-dirs setting (and other applicable settings)
belonging to the other repositories, if any, will
not be checked.

--case-sensitive BOOL Override case-sensitive setting
--dirsonly Only remove empty directories. No files will

be removed. Using this option will automatically
enable the --emptydirs option as well.

--disable-undo WARNING: This option disables use of the undo
mechanism for this clean operation and should be
used with extreme caution.

--dotfiles Include files beginning with a dot (".").
--emptydirs Remove any empty directories that are not

explicitly exempted via the empty-dirs setting
or another applicable setting or command line
argument. Matching files, if any, are removed
prior to check-ing for any empty directories;
therefore, directories that contain only files
that were removed will be removed as well.

-f|--force Remove files without prompting.
-i|--prompt Prompt before removing each file. This option

implies the --disable-undo option.
-x|--verily WARNING: Removes everything that is not a managed

file or the repository itself. This option
implies the --force, --emptydirs, --dotfiles, and
--disable-undo options. Furthermore, it
completely disregards the keep-glob
and ignore-glob settings. However, it does honor
the --ignore and --keep options.

--clean CSG WARNING: Never prompt to delete any files matching
this comma separated list of glob patterns. Also,
deletions of any files matching this pattern list
cannot be undone.

--ignore CSG Ignore files matching patterns from the
comma separated list of glob patterns.

--keep <CSG> Keep files matching this comma separated
list of glob patterns.

-n|--dry-run Delete nothing, but display what would have been
deleted.

--no-prompt This option disables prompting the user for input
and assumes an answer of 'No' for every question.

--temp Remove only Fossil-generated temporary files.
-v|--verbose Show all files as they are removed.

See also: addremove, extras, status

86 CHAPTER 8. FOSSIL COMMANDS

8.3.13 branch

This command is used if you want to create or list branches in a repository.
Previously we discussed forks (See Section [sub:Complications]); branches are
the same idea but under user control. This would be where you have version
1.0 of something but want to branch off version 2.0 to add new features but
want to keep a 1.0 branch for maintenance.

$ fossil help branch
Usage: fossil branch SUBCOMMAND ... ?OPTIONS?

Run various subcommands to manage branches of the open repository or
of the repository identified by the -R or --repository option.

fossil branch current

Print the name of the branch for the current check-out

fossil branch info BRANCH-NAME

Print information about a branch

fossil branch list|ls ?OPTIONS?

List all branches. Options:
-a|--all List all branches. Default show only open branches
-c|--closed List closed branches.
-r Reverse the sort order
-t Show recently changed branches first

fossil branch new BRANCH-NAME BASIS ?OPTIONS?

Create a new branch BRANCH-NAME off of check-in BASIS.
Supported options for this subcommand include:
--private branch is private (i.e., remains local)
--bgcolor COLOR use COLOR instead of automatic background
--nosign do not sign contents on this branch
--date-override DATE DATE to use instead of 'now'
--user-override USER USER to use instead of the current default

DATE may be "now" or "YYYY-MM-DDTHH:MM:SS.SSS". If in
year-month-day form, it may be truncated, the "T" may be
replaced by a space, and it may also name a timezone offset
from UTC as "-HH:MM" (westward) or "+HH:MM" (eastward).
Either no timezone suffix or "Z" means UTC.

8.3. MAINTENANCE 87

Options valid for all subcommands:

-R|--repository FILE Run commands on repository FILE

8.3.14 merge

This command does the opposite of branch, it brings two branches together.

$ fossil help merge
Usage: fossil merge ?OPTIONS? ?VERSION?

The argument VERSION is a version that should be merged into the
current check-out. All changes from VERSION back to the nearest
common ancestor are merged. Except, if either of the --cherrypick or
--backout options are used only the changes associated with the
single check-in VERSION are merged. The --backout option causes
the changes associated with VERSION to be removed from the current
check-out rather than added.

If the VERSION argument is omitted, then Fossil attempts to find
a recent fork on the current branch to merge.

Only file content is merged. The result continues to use the
file and directory names from the current check-out even if those
names might have been changed in the branch being merged in.

Options:

--backout Do a reverse cherrypick merge against VERSION.
In other words, back out the changes that were
added by VERSION.

--baseline BASELINE Use BASELINE as the "pivot" of the merge instead
of the nearest common ancestor. This allows
a sequence of changes in a branch to be merged
without having to merge the entire branch.

--binary GLOBPATTERN Treat files that match GLOBPATTERN as binary
and do not try to merge parallel changes. This
option overrides the "binary-glob" setting.

--case-sensitive BOOL Override the case-sensitive setting. If false,
files whose names differ only in case are taken
to be the same file.

--cherrypick Do a cherrypick merge VERSION into the current

88 CHAPTER 8. FOSSIL COMMANDS

check-out. A cherrypick merge pulls in the changes
of the single check-in VERSION, rather than all
changes back to the nearest common ancestor.

-f|--force Force the merge even if it would be a no-op.

--force-missing Force the merge even if there is missing content.

--integrate Merged branch will be closed when committing.

-K|--keep-merge-files On merge conflict, retain the temporary files
used for merging, named *-baseline, *-original,
and *-merge.

-n|--dry-run If given, display instead of run actions

-v|--verbose Show additional details of the merge

8.3.15 tag

This command can be used to control “tags” which are attributes added to any
entry in the time line. You can also add/delete/control these tags from the
UI by going into the timeline, picking an entry then doing an edit. See Figure
[fig:Remove-Leaf].

$ fossil help tag
Usage: fossil tag SUBCOMMAND ...

Run various subcommands to control tags and properties.

fossil tag add ?OPTIONS? TAGNAME CHECK-IN ?VALUE?

Add a new tag or property to CHECK-IN. The tag will
be usable instead of a CHECK-IN in commands such as
update and merge. If the --propagate flag is present,
the tag value propagates to all descendants of CHECK-IN

Options:
--raw Raw tag name.
--propagate Propagating tag.
--date-override DATETIME Set date and time added.
--user-override USER Name USER when adding the tag.
--dryrun|-n Display the tag text, but do not

actually insert it into the database.

The --date-override and --user-override options support

8.3. MAINTENANCE 89

importing history from other SCM systems. DATETIME has
the form 'YYYY-MMM-DD HH:MM:SS'.

fossil tag cancel ?--raw? TAGNAME CHECK-IN

Remove the tag TAGNAME from CHECK-IN, and also remove
the propagation of the tag to any descendants. Use the
the --dryrun or -n options to see what would have happened.

Options:
--raw Raw tag name.
--date-override DATETIME Set date and time deleted.
--user-override USER Name USER when deleting the tag.
--dryrun|-n Display the control artifact, but do

not insert it into the database.

fossil tag find ?OPTIONS? TAGNAME

List all objects that use TAGNAME. TYPE can be "ci" for
check-ins or "e" for events. The limit option limits the number
of results to the given value.

Options:
--raw Raw tag name.
-t|--type TYPE One of "ci", or "e".
-n|--limit N Limit to N results.

fossil tag list|ls ?OPTIONS? ?CHECK-IN?

List all tags, or if CHECK-IN is supplied, list
all tags and their values for CHECK-IN. The tagtype option
takes one of: propagated, singleton, cancel.

Options:
--raw List tags raw names of tags
--tagtype TYPE List only tags of type TYPE
-v|--inverse Inverse the meaning of --tagtype TYPE.

The option --raw allows the manipulation of all types of tags
used for various internal purposes in fossil. It also shows
"cancel" tags for the "find" and "list" subcommands. You should
not use this option to make changes unless you are sure what
you are doing.

If you need to use a tagname that might be confused with
a hexadecimal baseline or artifact ID, you can explicitly

90 CHAPTER 8. FOSSIL COMMANDS

disambiguate it by prefixing it with "tag:". For instance:

fossil update decaf

will be taken as an artifact or baseline ID and fossil will
probably complain that no such revision was found. However

fossil update tag:decaf

will assume that "decaf" is a tag/branch name.

8.3.16 settings

This command is used to set or unset a number of properties for fossil.

$ fossil help settings
Usage: fossil settings ?SETTING? ?VALUE? ?OPTIONS?

or: fossil unset SETTING ?OPTIONS?

The "settings" command with no arguments lists all settings and their
values. With just a SETTING name it shows the current value of that setting.
With a VALUE argument it changes the property for the current repository.

Settings marked as versionable are overridden by the contents of the
file named .fossil-settings/PROPERTY in the check-out root, if that
file exists.

The "unset" command clears a setting.

Settings can have both a "local" repository-only value and "global" value
that applies to all repositories. The local values are stored in the
"config" table of the repository and the global values are stored in the
configuration database. If both a local and a global value exists for a
setting, the local value takes precedence. This command normally operates
on the local settings. Use the --global option to change global settings.

Options:
--global set or unset the given property globally instead of

setting or unsetting it for the open repository only.

--exact only consider exact name matches.

See also: configuration

8.4. MISCELLANEOUS 91

8.3.17 info

fossil info ?VERSION | REPOSITORY_FILENAME? ?OPTIONS?

This command show various information on the repository, a bit like the status
command does. Using the command without any arguments, it shows informa-
tion on the current check-out:

• name of the project and its code (hash value)
• path to the repository
• path to Fossil’s global configuration database for the user (typically
~./fossil)

• path to the local open check-out
• id and time stamp of the last check-out, its parent and child
• tags
• last commit message

When you do not want information on the last check-in, but on other versions,
you just supply the version on the command line. You can also explicitly provide
the repository file with the -R option. Then you will only get the project name
and code and the number of chek-ins.

The -v option is helpful since it provides not only the above information on
the current check-out but also tells you the locations of all other known check-
outs there are (if you have multiple open check-outs of the same repository in
different directories). It also lists the possible access URLs that have been used
over time (for the ui).

8.3.18 publish

fossil publish ?--only? TAGS...

This command causes artifacts identified by the given TAGS... (these can be
more than one tag) to be published (i.e. made non-private). This can be used
(for example) to convert a private branch into a public branch, or to publish a
bundle that was imported privately.

If any of TAGS names a branch, then all check-ins on the most recent instance of
that branch are included, not just the most recent check-in.

If any of TAGS name check-ins then all files and tags associated with those
check-ins are also published automatically. If the --only option is used, then
only the specific artifacts identified by TAGS are published.

If a TAG is already public, this command is a harmless no-op.

8.4 Miscellaneous

These are commands that don’t seem to fit in any category but are useful.

92 CHAPTER 8. FOSSIL COMMANDS

8.4.1 zip

You can do what this command does from the web based user interface. In
Figure [fig:Timeline-Detail] you can download a ZIP archive of the particular
version of the files. This command lets you do it from the command line.

$ fossil help zip
Usage: fossil zip VERSION OUTPUTFILE [OPTIONS]

Generate a ZIP archive for a check-in. If the --name option is
used, its argument becomes the name of the top-level directory in the
resulting ZIP archive. If --name is omitted, the top-level directory
name is derived from the project name, the check-in date and time, and
the artifact ID of the check-in.

The GLOBLIST argument to --exclude and --include can be a comma-separated
list of glob patterns, where each glob pattern may optionally be enclosed
in "..." or '...' so that it may contain commas. If a file matches both
--include and --exclude then it is excluded.

Options:
-X|--exclude GLOBLIST Comma-separated list of GLOBs of files to exclude
--include GLOBLIST Comma-separated list of GLOBs of files to include
--name DIRECTORYNAME The name of the top-level directory in the archive
-R REPOSITORY Specify a Fossil repository

Note: you can only download zip files when you have the corresponding user
privilige.

8.4.2 user

This command lets you modify user information. Again this is a command
line duplication of what you can do from the user interface in the browser, see
Figure [fig:New-Editor-user].

$ fossil help user
Usage: fossil user SUBCOMMAND ... ?-R|--repository FILE?

Run various subcommands on users of the open repository or of
the repository identified by the -R or --repository option.

fossil user capabilities USERNAME ?STRING?

Query or set the capabilities for user USERNAME

fossil user contact USERNAME ?CONTACT-INFO?

8.4. MISCELLANEOUS 93

Query or set contact information for user USERNAME

fossil user default ?USERNAME?

Query or set the default user. The default user is the
user for command-line interaction.

fossil user list
fossil user ls

List all users known to the repository

fossil user new ?USERNAME? ?CONTACT-INFO? ?PASSWORD?

Create a new user in the repository. Users can never be
deleted. They can be denied all access but they must continue
to exist in the database.

fossil user password USERNAME ?PASSWORD?

Change the web access password for a user.

8.4.3 finfo

This command will print the history of any particular file. This can be useful
if you need this history in some other system. You can pass this text file to the
other system which can than parse and use the data.

$ fossil help finfo
Usage: fossil finfo ?OPTIONS? FILENAME

Print the complete change history for a single file going backwards
in time. The default mode is -l.

For the -l|--log mode: If "-b|--brief" is specified one line per revision
is printed, otherwise the full comment is printed. The "-n|--limit N"
and "--offset P" options limits the output to the first N changes
after skipping P changes.

In the -s mode prints the status as <status> <revision>. This is
a quick status and does not check for up-to-date-ness of the file.

In the -p mode, there's an optional flag "-r|--revision REVISION".
The specified version (or the latest checked out version) is printed
to stdout. The -p mode is another form of the "cat" command.

94 CHAPTER 8. FOSSIL COMMANDS

Options:
-b|--brief display a brief (one line / revision) summary
--case-sensitive B Enable or disable case-sensitive filenames. B is a

boolean: "yes", "no", "true", "false", etc.
-l|--log select log mode (the default)
-n|--limit N Display the first N changes (default unlimited).

N less than 0 means no limit.
--offset P skip P changes
-p|--print select print mode
-r|--revision R print the given revision (or ckout, if none is given)

to stdout (only in print mode)
-s|--status select status mode (print a status indicator for FILE)
-W|--width N Width of lines (default is to auto-detect). Must be

more than 22 or else 0 to indicate no limit.

See also: artifact, cat, descendants, info, leaves

An example would be to run it on the outline.txt file in the earlier version of our
book directory:

$ fossil finfo outline.txt

History of outline.txt

2010-05-17 [0272dc0169] Finished maintenance commands (user: jim, artifact:

{} [25b6e38e97])

2010-05-12 [5e5c0f7d55] End of day commit (user: jim, artifact: [d1a1d31fbd])

2010-05-10 [e924ca3525] End of day update (user: jim, artifact: [7cd19079a1])

2010-05-09 [0abb95b046] Intermediate commit, not done with basic commands

{} (user: jim, artifact: [6f7bcd48b9])

2010-05-07 [6921e453cd] Update outline & book corrections (user: jim,

{} artifact: [4eff85c793])

2010-05-03 [158492516c] Moved to clone repository (user: jim, artifact:

{} [23b729cb66])

2010-05-03 [1a403c87fc] Update before moving to server (user: jim, artifact:

{} [706a9d394d])

8.4. MISCELLANEOUS 95

2010-04-30 [fa5b9247bd] Working on chapter 1 (user: jim, artifact:

{} [7bb188f0c6])

2010-04-29 [51be6423a3] Update outline (user: jim, artifact: [7cd39dfa06])

2010-04-27 [39bc728527] [1665c78d94] Ticket Use (user: jim, artifact:

{} [1f82aaf41c])

2010-04-26 [497b93858f] Update to catch changes in outline (user: jim,

{} artifact: [b870231e48])

2010-04-25 [8fa0708186] Initial Commit (user: jim, artifact: [34a460a468])

8.4.4 timeline

This prints out the timeline of the project in various ways. The command would
be useful if you were building a GUI front end for Fossil and wanted to display
the timeline. You could issue this command and get the result back and display
it in your UI. There are a number of options in the command to control the
listing.

$ fossil help timeline
Usage: fossil timeline ?WHEN? ?check-in|DATETIME? ?OPTIONS?

Print a summary of activity going backwards in date and time
specified or from the current date and time if no arguments
are given. The WHEN argument can be any unique abbreviation
of one of these keywords:

before
after
descendants | children
ancestors | parents

The check-in can be any unique prefix of 4 characters or more. You
can also say "current" for the current version.

DATETIME may be "now" or "YYYY-MM-DDTHH:MM:SS.SSS". If in
year-month-day form, it may be truncated, the "T" may be replaced by
a space, and it may also name a timezone offset from UTC as "-HH:MM"
(westward) or "+HH:MM" (eastward). Either no timezone suffix or "Z"
means UTC.

96 CHAPTER 8. FOSSIL COMMANDS

Options:
-n|--limit N If N is positive, output the first N entries. If

N is negative, output the first -N lines. If N is
zero, no limit. Default is -20 meaning 20 lines.

-p|--path PATH Output items affecting PATH only.
PATH can be a file or a sub directory.

--offset P skip P changes
--sql Show the SQL used to generate the timeline
-t|--type TYPE Output items from the given types only, such as:

ci = file commits only
e = technical notes only
t = tickets only
w = wiki commits only

-v|--verbose Output the list of files changed by each commit
and the type of each change (edited, deleted,
etc.) after the check-in comment.

-W|--width N Width of lines (default is to auto-detect). N must be
either greater than 20 or it ust be zero 0 to
indicate no limit, resulting in a single line per
entry.

-R REPO_FILE Specifies the repository db to use. Default is
the current check-out's repository.

8.4.5 wiki

This command allows you to have command line control of the wiki. Again this
is useful if you were writing a shell to control Fossil or wanted to add a number
of computer generated pages to the Wiki.

$ fossil help wiki
Usage: fossil wiki (export|create|commit|list) WikiName

Run various subcommands to work with wiki entries or tech notes.

fossil wiki export ?OPTIONS? PAGENAME ?FILE?
fossil wiki export ?OPTIONS? -t|--technote DATETIME|TECHNOTE-ID ?FILE?

Sends the latest version of either a wiki page or of a tech
note to the given file or standard output. A filename of "-"
writes the output to standard output. The directory parts of
the output filename are created if needed.
If PAGENAME is provided, the named wiki page will be output.

Options:

8.4. MISCELLANEOUS 97

--technote|-t DATETIME|TECHNOTE-ID
Specifies that a technote, rather than a wiki page,
will be exported. If DATETIME is used, the most
recently modified tech note with that DATETIME will
output.

-h|--html The body (only) is rendered in HTML form, without
any page header/foot or HTML/BODY tag wrappers.

-H|--HTML Works like -h|-html but wraps the output in
<html><body>...</body></html>.

-p|--pre If -h|-H is used and the page or technote has
the text/plain mimetype, its HTML-escaped output
will be wrapped in <pre>...</pre>.

fossil wiki (create|commit) PAGENAME ?FILE? ?OPTIONS?

Create a new or commit changes to an existing wiki page or
technote from FILE or from standard input. PAGENAME is the
name of the wiki entry or the timeline comment of the
technote.

Options:
-M|--mimetype TEXT-FORMAT The mime type of the update.

Defaults to the type used by
the previous version of the
page, or text/x-fossil-wiki.
Valid values are: text/x-fossil-wiki,
text/x-markdown and text/plain. fossil,
markdown or plain can be specified as
synonyms of these values.

-t|--technote DATETIME Specifies the timestamp of
the technote to be created or
updated. When updating a tech note
the most recently modified tech note
with the specified timestamp will be
updated.

-t|--technote TECHNOTE-ID Specifies the technote to be
updated by its technote id.

--technote-tags TAGS The set of tags for a technote.
--technote-bgcolor COLOR The color used for the technote

on the timeline.

fossil wiki list ?OPTIONS?
fossil wiki ls ?OPTIONS?

Lists all wiki entries, one per line, ordered
case-insensitively by name.

98 CHAPTER 8. FOSSIL COMMANDS

Options:
-t|--technote Technotes will be listed instead of

pages. The technotes will be in order
of timestamp with the most recent
first.

-s|--show-technote-ids The id of the tech note will be listed
along side the timestamp. The tech note
id will be the first word on each line.
This option only applies if the
--technote option is also specified.

DATETIME may be "now" or "YYYY-MM-DDTHH:MM:SS.SSS". If in
year-month-day form, it may be truncated, the "T" may be replaced by
a space, and it may also name a timezone offset from UTC as "-HH:MM"
(westward) or "+HH:MM" (eastward). Either no timezone suffix or "Z"
means UTC.

The "Sandbox" wiki pseudo-page is a special case. Its name is
checked case-insensitively and either "create" or "commit" may be
used to update its contents.

8.5 Advanced

These are commands that you will rarely have to use. These are functions that
are needed to do very complicated things with Fossil. If you have to use these
you are probably way beyond the audience for this book.

8.5.1 uv

This command handles unversioned content, i.e. files (also binary files) that you
want to provide via fossil but that are not part of the versioned files. A typical
example is release files (binary distributions from the source code).

8.5.2 scrub

This is used to removed sensitive information like passwords from a repository.
This allows you to then send the whole repository to someone else for their use.

$ fossil help scrub
Usage: fossil scrub ?OPTIONS? ?REPOSITORY?

The command removes sensitive information (such as passwords) from a
repository so that the repository can be sent to an untrusted reader.

8.5. ADVANCED 99

By default, only passwords are removed. However, if the --verily option
is added, then private branches, concealed email addresses, IP
addresses of correspondents, and similar privacy-sensitive fields
are also purged. If the --private option is used, then only private
branches are removed and all other information is left intact.

This command permanently deletes the scrubbed information. THE EFFECTS
OF THIS COMMAND ARE NOT REVERSIBLE. USE WITH CAUTION!

The user is prompted to confirm the scrub unless the --force option
is used.

Options:
--force do not prompt for confirmation
--private only private branches are removed from the repository
--verily scrub real thoroughly (see above)

8.5.3 search

This is used to search the timeline entries for a pattern. This can also be done in
your browser on the timeline page.

$ fossil help search
Usage: fossil search [-all|-a] [-limit|-n #] [-width|-W #] pattern...

Search for timeline entries matching all words provided on the
command line. Whole-word matches scope more highly than partial
matches.

Note: The command only search the EVENT table. So it will only
display check-in comments or other comments that appear on an
unaugmented timeline. It does not search document text or forum
messages.

Outputs, by default, some top-N fraction of the results. The -all
option can be used to output all matches, regardless of their search
score. The -limit option can be used to limit the number of entries
returned. The -width option can be used to set the output width used
when printing matches.

Options:

-a|--all Output all matches, not just best matches.
-n|--limit N Limit output to N matches.
-W|--width WIDTH Set display width to WIDTH columns, 0 for

unlimited. Defaults the terminal's width.

100 CHAPTER 8. FOSSIL COMMANDS

8.5.4 sha3sum

This can compute the sha1 value for a particular file. These sums are the labels
that Fossil uses on all objects and should be unique for any file.

$ fossil help sha3sum
Usage: fossil sha3sum FILE...

Compute an SHA3 checksum of all files named on the command-line.
If a file is named "-" then take its content from standard input.

To be clear: The official NIST FIPS-202 implementation of SHA3
with the added 01 padding is used, not the original Keccak submission.

Options:

--224 Compute a SHA3-224 hash
--256 Compute a SHA3-256 hash (the default)
--384 Compute a SHA3-384 hash
--512 Compute a SHA3-512 hash
--size N An N-bit hash. N must be a multiple of 32 between

128 and 512.
-h, --dereference If FILE is a symbolic link, compute the hash on

the object pointed to, not on the link itself.

See also: md5sum, sha1sum

8.5.5 configuration

This command allows you to save or load a custom configuration of Fossil.

$ fossil help configuration
Usage: fossil configuration METHOD ... ?OPTIONS?

Where METHOD is one of: export import merge pull push reset. All methods
accept the -R or --repository option to specify a repository.

fossil configuration export AREA FILENAME

Write to FILENAME exported configuration information for AREA.
AREA can be one of:

all email interwiki project shun skin
ticket user alias subscriber

fossil configuration import FILENAME

8.5. ADVANCED 101

Read a configuration from FILENAME, overwriting the current
configuration.

fossil configuration merge FILENAME

Read a configuration from FILENAME and merge its values into
the current configuration. Existing values take priority over
values read from FILENAME.

fossil configuration pull AREA ?URL?

Pull and install the configuration from a different server
identified by URL. If no URL is specified, then the default
server is used. Use the --overwrite flag to completely
replace local settings with content received from URL.

fossil configuration push AREA ?URL?

Push the local configuration into the remote server identified
by URL. Admin privilege is required on the remote server for
this to work. When the same record exists both locally and on
the remote end, the one that was most recently changed wins.

fossil configuration reset AREA

Restore the configuration to the default. AREA as above.

fossil configuration sync AREA ?URL?

Synchronize configuration changes in the local repository with
the remote repository at URL.

Options:
-R|--repository FILE Extract info from repository FILE

See also: settings, unset

8.5.6 descendants

This is used to find where the checked out files are in the time line.

$ fossil help descendants
Usage: fossil descendants ?check-in? ?OPTIONS?

Find all leaf descendants of the check-in specified or if the argument
is omitted, of the check-in currently checked out.

102 CHAPTER 8. FOSSIL COMMANDS

Options:
-R|--repository FILE Extract info from repository FILE
-W|--width N Width of lines (default is to auto-detect).

Must be greater than 20 or else 0 for no
limit, resulting in a one line per entry.

See also: finfo, info, leaves

Chapter 9

Pikchr

This section needs completion.

103

104 CHAPTER 9. PIKCHR

Chapter 10

TH1 Scripting language

TH1 is designed to be the scripting language of Fossil. It is used in several
places within Fossil. As a typical user, you will probably first meet TH1 when
cusomizing the ticket system (see 2.6 for an overview of the ticket system and
7.1 on how to customize the ticket system). You can customize the behaviour of
the ticket web pages that show

• the form for creating new tickets
• existing tickets
• the form for editing existing tickets
• the list of ticket reports

If you are changing the overall look and feel of Fossil’s web pages, you can use
TH1 when designing the skin. Both the “Content Header” and the “Content
Footer” can contain TH1 code (also the optional Javascript for the footer). This
includes the possibility to change Fossil’s default “Content Secutiry Policy”
(CSP) which can be overridden by custom TH1 code.

Further, 9 scripts can include TH1 scripts. However, this is restricted to the
Fossil command pikchr on the command line. TH1 scripts are not enabled
within Fossil’s web pages (also including /pikchrshow).

Finally, there are two place where TH1 can be used when Fossil is explicitly
enabled to do so at compile-time:

• when compiled with the --with-th1-docs option, Fossil’s embedded
documentation facility via the /docweb pages can containt TH1 scripts. It
is a compile-time option since it opens Fossil scripting to anyone who has
commit capabilities on the repository and thus can commit documentation
files containing arbitrary TH1 code. This can be dangerous and must
therefore be enabled already at compile-time. In addition, this option
must be enabled in Fossil’s settings (option th1-docs in the Admin menu
under Settings; see section 7). Note, that TH1 scripts only work in

105

106 CHAPTER 10. TH1 SCRIPTING LANGUAGE

embedded documentation files having the mime type “application/x-
th1”. The ideal situation is to use a file having a file name ending in .th1
and containing HTML. The TH1 code is then embedded into the special
<th1> tag.

• when compiled with the --with-th1-hooks option, TH1 scripts can be
used to monitor, create, alter, or cancel the execution of Fossil commands
and web pages (additionally, the option th1-hooks must be enabled at
runtime (in the Admin menu under Settings)). Hooks can then be set
to run before and/or after Fossil command execution, and before and/or
after the rendering of a web page.

10.1 Introduction to TH1

10.1.1 TH1 is a Tcl-like language

TH1 is a string-based command language closely based on the Tcl language.
The language has only a few fundamental constructs and relatively little syntax
which is meant to be simple. TH1 is an interpreted language and it is parsed,
compiled and executed when the script runs. In Fossil, TH1 scripts are typically
run to build web pages, often in response to web form submissions.

The basic mechanisms of TH1 are all related to strings and string substitutions.
The TH1/Tcl way of doing things is a little different from some other program-
ming languages with which you may already be familiar, so it is worth making
sure you understand the basic concepts.

10.2 The Hello world program

The traditional starting place for a language introduction is the classic “Hello,
World” program. In TH1 this program has only a single line:

puts "Hello, world\n"

The command to output a string in TH1 is the puts command (the same
command name as in Tcl). A single unit of text after the puts command will be
printed to the output stream. If the string has more than one word, you must
enclose the string in double quotes or curly brackets. A set of words enclosed in
quotes or curly brackets is treated as a single unit, while words separated by
white space are treated as multiple arguments to the command.

https://www.tcl-lang.org

10.3. TH1 STRUCTURE AND SYNTAX 107

10.3 TH1 structure and syntax

10.3.1 Datatypes

TH1 has at its core only a single data type which is string. All values in TH1 are
strings, variables hold strings and the procedures return strings. Strings in TH1
consist of single byte characters and are zero terminated. Characters outside
of the ASCII range, i.e. characters in the 0x80-0xff range have no TH1 meaning
at all: they are not considered digits or letters, nor are they considered white
space.

Depending on context, TH1 can interpret a string in four different ways. First of
all, strings can be just that: text consisting of arbitrary sequences of characters.
Second, a string can be considered a list, an ordered sequence of words separated
by white space. Third, a string can be a command. A command is a list where
the first word is interpreted as the name of a command, optionally followed
by further argument words. Fourth, and last, a string can be interpreted as an
expression.

The latter three interpretations of strings are discussed in more detail below.

10.3.2 Lists

A list in TH1 is an ordered sequence of items, or words separated by white
space. In TH1 the following characters constitute white space:

' ' 0x20
'\t' 0x09
'\n' 0x0A
'\v' 0x0B
'\f' 0x0C
'\r' 0x0D

A word can be any sequence of characters delimited by white space. It is not
necessary that a word is alphanumeric at all: ".%*" is a valid word in TH1. If a
word needs to contain embedded white space characters, it needs to be quoted,
with either a double quotes or with opening/closing curly brackets. Quoting
has the effect of grouping the quoted content into a single list element.

Words cannot start with one of the TH1 special characters { } [] \ ; and ".
Note that a single quote ‘ is not a special character in TH1. To use one of these
characters to start a word it must be escaped, which is discussed further later
on.

TH1 offers several built-in commands for working with lists, such as counting
the number of words in a list, retrieving individual words from the list by index
and appending new items to a list. These commands are discussed in the section
“Working with lists”.

108 CHAPTER 10. TH1 SCRIPTING LANGUAGE

10.3.3 Commands

TH1 casts everything into the mold of a command, even programming con-
structs like variable assignment and procedure definition. TH1 adds a tiny
amount of syntax needed to properly invoke commands, and then it leaves all
the hard work up to the command implementation.

Commands are a special form of list. The basic syntax for a TH1 command is:

command arg1 arg2 arg3 ...

The command is either the name of a built-in command or a TH1 procedure.

White space is used to separate the command name and its arguments, and a
newline character or semicolon is used to terminate a command. TH1 comments
are lines with a # character at the beginning of the line, or with a # character
after the semicolon terminating a command.

10.3.4 Grouping & substitution

TH1 does not interpret the arguments to the commands except to perform
grouping, which allows multiple words in one argument, and substitution,
which is used to deal with special characters, to fetch variables and to perform
nested command calls. Hence, the behavior of the TH1 command processor can
be summarized in three basic steps:

1. Argument grouping.
2. Value substitution of backslash escapes, variables and nested commands
3. Command invocation.

Note that there is no step to evaluate the arguments to a command. After
substitution, arguments are passed verbatim to the command and it is up to the
command to evaluate its arguments as needed.

10.3.5 Argument grouping

TH1 has two mechanisms for grouping multiple words into a single item:

• Double quotes, " "
• Curly brackets, { }

Whilst both have the effect of grouping a set of words, they have different
impact on the next phase of substitution. In brief, double quotes only group
their content and curly brackets group and prevent all substitution on their
content.

Grouping proceeds from left to right in the string and is not affected by the
subsequent substitution. If a substitution leads to a string which would be
grouped differently, it has no effect, as the grouping has already been decided
in the preceding grouping phase.

10.3. TH1 STRUCTURE AND SYNTAX 109

10.3.6 Value substitutions

TH1 performs three different substitutions (see the th.c/thSubstWord code for
details)

• Backslash escape substitution
• Variable substitution
• Nested command substitution

Like grouping, substitution proceeds from left to right and is performed only
once: if a substitution leads to a string which could again be substituted such
this not happen.

10.3.7 Backslash escape substitution

In general, the backslash (\) disables substitution for the single character im-
mediately following the backslash. Any character immediately following the
backslash will stand as literal. This is useful to escape the special meaning of
the characters { } [] \ ; and ".

There are two specific strings which are replaced by specific values during
the substitution phase. A backslash followed by the letter n gets replaced by
the newline character, as in C. A backslash followed by the letter x and two
hexadecimal digits gets replaced by the character with that value, i.e. writing
\x20 is the same as writing a space. Note that the \x substitution does not
“keep going” as long as it has hex digits as in Tcl, but insists on two digits. The
word \x2121 is not a single exclamation mark, but the 3 letter word !21.

10.3.8 Variable substitution

Like any programming language, TH1 has a concept of variables. TH1 variables
are named containers that hold string values. Variables are discussed in more
detail later in this document, for now we limit ourselves to variable substitution.

The dollar sign ($) may be used as a special shorthand form for substituting
variable values. If $ appears in an argument that isn’t enclosed in curly brackets
then variable substitution will occur. The characters after the $, up to the first
character that isn’t a number, letter, or underscore, are taken as a variable name
and the string value of that variable is substituted for the name. For example, if
variable foo has the value test, then the command puts $foo.c is equivalent
to the command:

puts test.c

There are two special forms for variable substitution. If the next character after
the name of the variable is an open parenthesis, then the variable is assumed to
be an array name, and all of the characters between the open parenthesis and
the next close parenthesis are taken as an index into the array. Command substi-
tutions and variable substitutions are performed on the information between

110 CHAPTER 10. TH1 SCRIPTING LANGUAGE

the parentheses before it is used as an index. For example, if the variable x is an
array with one element named first and value 87 and another element named
14 and value more, then the command

puts xyz$x(first)zyx

is equivalent to the command

puts xyz87zyx

If the variable index has the value ‘14’, then the command

puts xyz$x($index)zyx

is equivalent to the command

puts xyzmorezyx

See the section Variables and arrays below for more information on arrays.

The second special form for variables occurs when the dollar sign is followed
by an open curly bracket. In this case the variable name consists of all the
characters up to the next curly bracket. Array references are not possible in this
form: the name between curly brackets is assumed to refer to a scalar variable.
For example, if variable foo has the value ‘test’, then the command

set a abc${foo}bar

is equivalent to the command

set a abctestbar

A dollar sign followed by something other than a letter, digit, underscore, or
left parenthesis is treated as a literal dollar sign. The following prints a single
character $.

puts x $

10.3.9 Command substitution

The last form of substitution is command substitution. A nested command
is delimited by square brackets, []. The TH1 interpreter takes everything
between the brackets and evaluates it as a command. It rewrites the outer
command by replacing the square brackets and everything between them with
the result of the nested command.

Example:

puts \[string length foobar]

=> 6

10.3. TH1 STRUCTURE AND SYNTAX 111

In the example, the nested command is: string length foobar. This command
returns the length of the string foobar. The nested command runs first. Then,
command substitution causes the outer command to be rewritten as if it were:

puts 6

If there are several cases of command substitution within a single command, the
interpreter processes them from left to right. As each right bracket is encoun-
tered, the command it delimits is evaluated. This results in a sensible ordering
in which nested commands are evaluated first so that their result can be used in
arguments to the outer command.

10.3.10 Argument grouping revisited

During the substitution phase of command evaluation, the two grouping opera-
tors, the curly bracket and the double quote are treated differently by the TH1
interpreter.

Grouping words with double quotes allows substitutions to occur within the
double quotes. A double quote is only used for grouping when it comes after
white space. The string a"b" is a normal 4 character string, and not the two
character string ab.

puts a"b"

=> a"b"

Grouping words within curly brackets disables substitution within the brackets.
Again, A opening curly bracket is only used for grouping when it comes after
white space. Characters within curly brackets are passed to a command exactly
as written, and not even backslash escapes are processed.

Note that curly brackets have this effect only when they are used for grouping
(i.e. at the beginning and end of a sequence of words). If a string is already
grouped, either with double quotes or curly brackets, and the curly brackets
occur in the middle of the grouped string (e.g. “foo{bar”), then the curly brackets
are treated as regular characters with no special meaning. If the string is grouped
with double quotes, substitutions will occur within the quoted string, even
between the brackets.

The square bracket syntax used for command substitution does not provide
grouping. Instead, a nested command is considered part of the current group.
In the command below, the double quotes group the last argument, and the
nested command is just part of that group:

puts "The length of $s is [string length $s]."

If an argument is made up of only a nested command, you do not need to
group it with double-quotes because the TH1 parser treats the whole nested
command as part of the group. A nested command is treated as an unbroken

112 CHAPTER 10. TH1 SCRIPTING LANGUAGE

sequence of characters, regardless of its internal structure. It is included with
the surrounding group of characters when collecting arguments for the main
command.

10.3.11 Summary

The following rules summarize the fundamental mechanisms of grouping and
substitution that are performed by the TH1 interpreter before it invokes a
command:

• Command arguments are separated by white space, unless arguments are
grouped with curly brackets or double quotes as described below.

• Grouping with curly brackets, {}, prevents substitutions. Curly brackets
nest. The interpreter includes all characters between the matching left and
right brace in the group, including newlines, semicolons, and nested curly
brackets. The enclosing (i.e., outermost) curly brackets are not included in
the group’s value.

• Grouping with double quotes, " ", allows substitutions. The interpreter
groups everything until another double quote is found, including newlines
and semicolons. The enclosing quotes are not included in the group of
characters. A double-quote character can be included in the group by
quoting it with a backslash, (i.e. \").

• Grouping decisions are made before substitutions are performed, which
means that the values of variables or command results do not affect group-
ing.

• A dollar sign, $, causes variable substitution. Variable names can be any
length, and case is significant. If variable references are embedded into
other strings, or if they include characters other than letters, digits, and
the underscore, they can be distinguished with the ${varname} syntax.

• Square brackets, [], cause command substitution. Everything between the
brackets is treated as a command, and everything including the brackets
is replaced with the result of the command. Nesting is allowed.

• The backslash character, \, is used to quote special characters. You can
think of this as another form of substitution in which the backslash and
the next character or group of characters is replaced with a new character.

• Substitutions can occur anywhere unless prevented by curly bracket
grouping. Part of a group can be a constant string, and other parts of it can
be the result of substitutions. Even the command name can be affected by
substitutions.

• A single round of substitutions is performed before command invoca-
tion. The result of a substitution is not interpreted a second time. This
rule is important if you have a variable value or a command result that

10.4. TH1 EXPRESSIONS 113

contains special characters such as spaces, dollar signs, square brackets,
or curly brackets. Because only a single round of substitution is done,
you do not have to worry about special characters in values causing extra
substitutions.

10.3.12 Caveats

• A common error is to forget a space between arguments when grouping
with curly brackets or quotes. This is because white space is used as the
separator, while the curly brackets or quotes only provide grouping. If
you forget the space, you will get syntax errors about the wrong number
of arguments being applied. The following is an error because of the
missing space between } and {:

if {$x > 1}{ puts "x = $x"}

• When double quotes are used for grouping, the special effect of curly
brackets is turned off. Substitutions occur everywhere inside a group
formed with double quotes. In the next command, the variables are still
substituted:

set x xvalue

set y "foo {$x} bar"

=> foo {xvalue} bar

• Spaces are not required around the square brackets used for command
substitution. For the purposes of grouping, the interpreter considers
everything between the square brackets as part of the current group.

10.4 TH1 expressions

The TH1 interpreter itself does not evaluate math expressions. TH1 just does
grouping, substitutions and command invocations. However, several built-in
commands see one of more of their arguments as expressions and request the
interpreter to calculate the value of such expressions.

The expr command is the simplest such command and is used to parse and
evaluate expressions:

puts [expr 7.4/2]

=> 3.7

Note that an expression can contain white space, but if it does it must be grouped
in order to be recognized as a single argument.

114 CHAPTER 10. TH1 SCRIPTING LANGUAGE

Within the context of expression evaluation TH1 works with three datatypes:
two types of number, integer and floating point, and string. Integer values are
promoted to floating point values as needed. The Boolean values True and False
are represented by the integer values 1 and 0 respectively. The implementation
of expr is careful to preserve accurate numeric values and avoid unnecessary
conversions between numbers and strings.

Before expression evaluation takes place, both variable and command substi-
tution is performed on the expression string. Hence, you can include variable
references and nested commands in math expressions, even if the expression
string was originally quoted with curly brackets. Note that backslash escape
substitution is not performed by the expression evaluator.

A TH1 expression consists of a combination of operands, operators, and paren-
theses. White space may be used between the operands and operators and
parentheses; it is ignored by the expression processor. Where possible, operands
are interpreted as integer values. If an operand is not in integer format, then it
is treated as a floating-point number if that is possible. Floating-point numbers
may be specified in any of the ways accepted by an ANSI-compliant C compiler.
For example, all of the following are valid floating-point numbers: 2.1, 3.,
6e4, 7.91e+16. If no numeric interpretation is possible, then an operand is
left as a string (and only a limited set of operators may be applied to it).

Operands may be specified in any of the following ways:

• As a numeric value, either integer or floating-point.

• As a string enclosed in curly brackets. The characters between the opening
bracket and matching closing bracket are used as the operand without
any substitutions.

• As a string enclosed in double quotes. The expression parser performs
variable and command substitutions on the information between the
quotes, and uses the resulting value as the operand.

• As a TH1 variable, using standard $ notation. The variable’s value is used
as the operand.

• As a TH1 command enclosed in square brackets. The command will be
executed and its result will be used as the operand.

Where substitutions occur above (e.g. inside quoted strings), they are performed
by the expression processor. However, an additional layer of substitution may
already have been performed by the command parser before the expression pro-
cessor was called. As discussed below, it is usually best to enclose expressions
in curly brackets to prevent the command parser from performing substitutions
on the contents.

The valid operators are listed below, grouped in decreasing order of precedence:

10.5. TH1 VARIABLES 115

All of the binary operators group left-to-right within the same precedence level.
For example, the expression 4*2 < 7 evaluates to 0.

All internal computations involving integers are done with the C type int,
and all internal computations involving floating-point are done with the C
type double. Conversion among internal representations for integer, floating-
point, and string operands is done automatically as needed. For arithmetic
computations, integers are used until some floating-point number is introduced,
after which floating-point is used.

String values may be used as operands of the comparison operators, although
the expression evaluator tries to do comparisons as integer or floating-point
when it can. If one of the operands of a comparison is a string and the other has
a numeric value, the numeric operand is converted back to a string.

10.5 TH1 variables

Like almost all programming languages TH1 has the concept of variables. TH1
variables bind a name to a string value. A variable name must be unique in
its scope, either the global scope or a local scope. TH1 supports two types of
variables: scalars and arrays.

TH1 allows the definition of variables and the use of their values either through
$-style variable substitution, the set command, or a few other mechanisms.
Variables need not be declared: a new variable will automatically be created
each time a new variable name is used.

10.5.1 Working with variables

TH1 has two key commands for working with variables, set and unset:

set varname ?value?

unset varname

info exists varname

The set command returns the value of variable varname. If the variable does
not exist, then an error is thrown. If the optional argument value is specified,
then the set command sets the value of varname to value, creating a new variable
in the current scope if one does not already exist, and returns its value.

The unset command removes a variable from its scope. The argument varname
is a variable name. If varname refers to an element of an array, then that element
is removed without affecting the rest of the array. If varname consists of an
array name with no parenthesized index, then the entire array is deleted. The
unset command returns an empty string as result. An error occurs if the variable
doesn’t exist.

116 CHAPTER 10. TH1 SCRIPTING LANGUAGE

The info exists command returns 1 if the variable named varname exists in
the current scope, either the global scope or the current local scope, and returns
0 otherwise.

10.5.2 Scalar variables and array variables

TH1 supports two types of variables: scalars and arrays. A scalar variable has a
single value, whereas an array variable can have any number of elements, each
with a name (called its “index”) and a value. TH1 arrays are one-dimensional
associative arrays, i.e. the index can be any single string.

If varname contains an open parenthesis and ends with a close parenthesis, then
it refers to an array element: the characters before the open parenthesis are the
name of the array, and the characters between the parentheses are the index
within the array. Otherwise varname refers to a scalar variable.

For example, the command set x(first) 44 will modify the element of x
whose index is first so that its new value is 44. Two-dimensional arrays can be
simulated in TH1 by using indices that contain multiple concatenated values.
For example, the commands

set a(2,3) 1

set a(3,6) 2

set the elements of a whose indices are 2,3 and 3,6.

In general, array elements may be used anywhere in TH1 that scalar variables
may be used. If an array is defined with a particular name, then there may not
be a scalar variable with the same name. Similarly, if there is a scalar variable
with a particular name then it is not possible to make array references to the
variable. To convert a scalar variable to an array or vice versa, remove the
existing variable with the unset command.

10.5.3 Variable scope

Variables exist in a scope. The TH1 interpreter maintains a global scope that
is available to and shared by all commands executed by it. Each invocation of
a user defined command creates a new local scope. This local scope holds the
arguments and local variables of that user command invocation and only exists
as long a the user command is executing.

If not in the body of user command, then references to varname refer to a global
variable, i.e. a variable in the global scope. In contrast, in the body of a user
defined command references to varname refer to a parameter or local variable
of the command. However, in the body of a user defined command, a global
variable can be explicitly referred to by preceding its name by ::.

10.6. TH1 COMMANDS, SCRIPTS AND PROGRAM FLOW 117

TH1 offers a special command to access variables not in the local scope of the
current command but in the local scope of the call chain of commands that leas
to the current command. This is the upvar command:

upvar ?frame? othervar myvar ?othervar myvar ...?

The upvar command arranges for one or more local variables in the current
procedure to refer to variables in an enclosing procedure call, or to global
variables. If frame is an integer, then it gives a distance (up the command
calling stack) to move. The argument frame may be omitted if othervar is not
an integer (frame then defaults to 1). For each othervar argument, the upvar
command makes the variable by that name in the local scope identified by
the frame offset accessible in the current procedure by the name given in the
corresponding myvar argument. The variable named by othervar need not exist
at the time of the call; it will be created the first time myvar is referenced, just
like an ordinary variable. The upvar command is only meaningful from within
user defined command bodies. Neither othervar nor myvar may refer to an
element of an array. The upvar command returns an empty string. The upvar
command simplifies the implementation of call-by-name procedure calling and
also makes it easier to build new control constructs as TH1 commands. For
example, consider the following procedure:

proc incr {name} {
upvar $name x
set x [expr $x+1]

}

incr is invoked with an argument giving the name of a variable, and it adds one
to the value of that variable.

10.6 TH1 commands, scripts and program flow

In TH1 there is actually no distinction between commands (often known as
‘statements’ and ‘functions’ in other languages) and “syntax”. There are no
reserved words (like if and while) as exist in C, Java, Python, Perl, etc. When
the TH1 interpreter starts up there is a list of built-in, known commands that
the interpreter uses to parse a line. These commands include for, set, puts, and
so on. They are, however, still just regular TH1 commands that obey the same
syntax rules as all TH1 commands, both built-in, and those that you create
yourself with the proc command.

10.6.1 Commands revisited

Like Tcl, TH1 is build up around commands. A command does something
for you, like outputting a string, computing a math expression, or generating
HTML to display a widget on the screen.

118 CHAPTER 10. TH1 SCRIPTING LANGUAGE

Commands are a special form of list. The basic syntax for a TH1 command is:

command arg1 arg2 arg3 ...

The command is either the name of a built-in command or a TH1 procedure.

White space is used to separate the command name and its arguments, and a
newline character or semicolon is used to terminate a command. TH1 comments
are lines with a # character at the beginning of the line, or with a # character
after the semicolon terminating a command.

10.6.2 Scripts

Normally, control in TH1 flows from one command to the next. The next
command is either in the same list (if the current command is terminated with
a semicolon) or in the next input line. A TH1 program is thus a TH1 list of
commands.

Such a list of commands is referred to as a “script”. A script is hence a self
contained code fragment containing one or more commands. The commands in
a script are analogous to statements in other programming languages.

Some commands take one or more scripts as arguments and run those scripts
zero or more times depending on the other arguments. For example, the if
command executes either the then script or the else script once, depending
on the if expression being true or false. The command that takes a script will
perform the normal grouping and substitution as part of executing the script.

Note that the script always needs to be enclosed in curly brackets to prevent
substitution taking place twice: once as part of the execution of the top level
command and once again when preparing the script. Forgetting to enclose a
script argument in curly brackets is common source of errors.

A few commands (return, error, break and continue) immediately stop execution
of the current script instead of passing control to the next command in the list.
Control is instead returned to the command that initiated the execution of the
current script.

10.6.3 Command result codes

Each command produces two results: a result code and a string. The code
indicates whether the command completed successfully or not, and the string
gives additional information. The valid codes are defined in th.h, and are:

TH1 programmers do not normally need to think about return codes, since
TH1_OK is almost always returned. If anything else is returned by a command,
then the TH1 interpreter immediately stops processing commands and returns
to its caller. If there are several nested invocations of the TH1 interpreter in
progress, then each nested command will usually return the error to its caller,

10.6. TH1 COMMANDS, SCRIPTS AND PROGRAM FLOW 119

until eventually the error is reported to the top-level application code. The
application will then display the error message for the user.

In a few cases, some commands will handle certain “error” conditions them-
selves and not return them upwards. For example, the for command checks for
the TH1_BREAK code; if it occurs, for stops executing the body of the loop and
returns TH1_OK to its caller. The for command also handles TH1_CONTINUE
codes and the procedure interpreter handles TH1_RETURN codes. The catch
command allows TH1 programs to catch errors and handle them without abort-
ing command interpretation any further.

10.6.4 Flow control commands

The flow control commands in TH1 are:

if expr1 body1 ?elseif expr2 body2? ? ?else? bodyN?

for init condition incr script

break ?value?

continue ?value?

error ?value?

catch script ?varname?

Below each command is discussed in turn

The if command has the following syntax:

if expr1 body1 ?elseif expr2 body2? ? ?else? bodyN?

The expr arguments are expressions, the body arguments are scripts and the el-
sif and else arguments are keyword constant strings. The if command optionally
executes one of its body scripts.

The expr arguments must evaluate to an integer value. If it evaluates to a
non-zero value the following body script is executed and upon return from that
script processing continues with the command following the if command. If an
expr argument evaluates to zero, its body script is skipped and the next option
is tried. When there are no more options to try, processing also continues with
the next command.

The if command returns the value of the executed script, or “0” when no script
was executed.

The for command has the following syntax:

for init condition incr body

120 CHAPTER 10. TH1 SCRIPTING LANGUAGE

The init, incr and body arguments are all scripts. The condition argument
is an expression yielding an integer result. The for command is a looping
command, similar in structure to the C for statement.

The for command first invokes the TH1 interpreter to execute init. Then it
repeatedly evaluates condition as an expression; if the result is non-zero it
invokes the TH1 interpreter on body, then invokes the TH1 interpreter on incr,
then repeats the loop. The command terminates when test evaluates to zero.

If a continue command is invoked within execution of the body script then any
remaining commands in the current execution of body are skipped; processing
continues by invoking the TH1 interpreter on incr, then evaluating condition,
and so on. If a break command is invoked within body or next, then the for
command will return immediately. The operation of break and continue are
similar to the corresponding statements in C.

The for command returns an empty string.

The break command has the following syntax:

break ?value?

The break command returns immediately from the current procedure (or top-
level command), with value as the return value and TH1_BREAK as the result
code. If value is not specified, the string “break” will be returned as result.

The continue command has the following syntax:

continue ?value?

The continue command returns immediately from the current procedure (or
top-level command), with value as the return value and TH1_CONTINUE as
the result code. If value is not specified, the string “continue” will be returned
as result.

The error command has the following syntax:

error ?value?

The error command returns immediately from the current procedure (or top-
level command), with value as the return value and TH1_ERROR as the result
code. If value is not specified, the string “error” will be returned as result.

The catch command has the following syntax:

catch script ?varname?

The catch command may be used to prevent errors from aborting command
interpretation. The catch command calls the TH1 interpreter recursively to
execute script, and always returns a TH1_OK code, regardless of any errors that
might occur while executing script.

The return value from catch is a decimal string giving the code returned by
the TH1 interpreter after executing script. This will be 0(TH1_OK) if there were

10.6. TH1 COMMANDS, SCRIPTS AND PROGRAM FLOW 121

no errors in command; otherwise it will have a non-zero value corresponding
to one of the exceptional result codes. If the varname argument is given, then it
gives the name of a variable; catch sets the value of the variable to the string
returned from running script (either a result or an error message).

10.6.5 Creating user defined commands

The proc command creates a new command. The syntax for the proc com-
mand is:

proc name args body

The proc command creates a new TH1 command procedure, name, replacing
any existing command there may have been by that name. Whenever the
new command is invoked, the contents of body will be executed by the TH1
interpreter.

The parameter args specifies the formal arguments to the procedure. It consists
of a list, possibly empty, each of whose elements specifies one argument. Each
argument specifier is also a list with either one or two fields. If there is only
a single field in the specifier, then it is the name of the argument; if there are
two fields, then the first is the argument name and the second is its default
value. Curly brackets and backslashes may be used in the usual way to specify
complex default values.

The proc command returns the null string.

10.6.6 Execution of user defined commands

If a command is a user defined command (i.e. a command created with the
proc command), then the TH1 interpreter creates a new local variable context,
binds the formal arguments to their actual values (i.e. TH1 uses call by value
exclusively) and loads the body script. Execution then proceeds with the first
command in that script. Execution ends when the last command has been
executed or when one of the returning commands is executed. When the script
ends, the local variable context is deleted and processing continues with the
next command after the user defined command.

More in detail, when a user defined command is invoked, a local variable is
created for each of the formal arguments to the procedure; its value is the value
of corresponding argument in the invoking command or the argument’s default
value. Arguments with default values need not be specified in a procedure
invocation. However, there must be enough actual arguments for all the formal
arguments that don’t have defaults, and there must not be any extra actual
arguments.

There is one special case to permit procedures with variable numbers of argu-
ments. If the last formal argument has the name args, then a call to the procedure
may contain more actual arguments than the procedure has formals. In this case,

122 CHAPTER 10. TH1 SCRIPTING LANGUAGE

all of the actual arguments starting at the one that would be assigned to args
are combined into a list (as if the list command had been used); this combined
value is assigned to the local variable args.

When body is being executed, variable names normally refer to local variables,
which are created automatically when referenced and deleted when the pro-
cedure returns. One local variable is automatically created for each of the
procedure’s arguments. Global variables can be accessed by using the :: syntax.

When a procedure is invoked, the procedure’s return value is the value specified
in a return command. If the procedure doesn’t execute an explicit return, then
its return value is the value of the last command executed in the procedure’s
body. If an error occurs while executing the procedure body, then the procedure
as a whole will return that same error.

The syntax for the return command is:

return ?-code code? ?value?

The optional argument pair -code code allows to change the return status
code from the default of TH1_OK to another status code. This code has to be
specified with its numeric value.

10.6.7 Special commands

TH1 includes three core commands that assist with working with commands.
They are:

breakpoint args

rename oldcmd newcmd

uplevel ?level? script

The breakpoint command does nothing. It is used as placeholder to place
breakpoints during debugging.

The rename command renames a user defined or a built-in command. The old
name is removed and the new name is inserted in the interpreter’s command
table.

The uplevel command executes a command in the variable scope of a com-
mand higher up in the call chain. The script argument is evaluated in the
variable scope indicated by level. The uplevel command returns the result of
that evaluation. If level is an integer, then it gives a distance (up the procedure
calling stack) to move before executing the command. If level is omitted then it
defaults to ‘1’.

For example, suppose that procedure a was invoked from top-level, and that it
called b, and that b called c. Suppose that c invokes the uplevel command. If
level is 1 or omitted, then the command will be executed in the variable context

10.7. WORKING WITH STRINGS 123

of b. If level is 2 then the command will be executed in the variable context of
a. If level is 3 then the command will be executed at top-level (i.e. only global
variables will be visible).

The uplevel command causes the invoking procedure to disappear from the
procedure calling stack while the command is being executed. In the above
example, suppose c invokes the command

uplevel 1 {set x 43; d}

where d is another TH1 procedure. The set command will modify the variable x
in the context of b, and d will execute at level 3, as if called from b. If it in turn
executes the command

uplevel {set x 42}

then the set command will modify the same variable x in the context of b context:
the procedure c does not appear to be on the call stack when d is executing.

10.7 Working with strings

TH1 provides the string command to facilitate working with strings. The
string command is a single command with seven subcommands, identified by
the first argument. The first argument serves no purpose other than to identify
the subcommand. If the first argument does not match a subcommand, an error
is thrown.

The seven string subcommands are:

string length string

string compare string1 string2

string first needle haystack ?startindex?

string last needle haystack ?startindex?

string range string first last

string repeat string count

string is alnum string

The string length subcommand takes one parameter, which is a string. It
returns the decimal string with the length of the string. As TH1 uses a single
byte character encoding the string size is both the size in characters and in bytes.

The string compare subcommand performs a character-by-character com-
parison of argument strings string1 and string2 in the same way as the C strcmp

124 CHAPTER 10. TH1 SCRIPTING LANGUAGE

procedure. It returns a decimal string with value -1, 0, or 1, depending on
whether string1 is lexicographically less than, equal to, or greater than string2.

The string first subcommand searches argument haystack for a sequence
of characters that exactly match the characters in argument needle. If found,
it returns a decimal string with the index of the first character in the first such
match within haystack. If not found, it returns return -1. The optional integer
argument startindex specifies the position where the search begins; the default
value is 0, i.e. the first character in haystack.

The string last subcommand searches argument haystack for a sequence
of characters that exactly match the characters in argument needle. If found,
it returns a decimal string with the index of the first character in the last such
match within haystack. If not found, it returns return -1. The optional integer
argument startindex specifies the position where the search begins; the default
value is 0, i.e. the first character in haystack.

The string range subcommand returns a range of consecutive characters
from argument string, starting with the character whose index is first and
ending with the character whose index is last. An index of zero refers to the first
character of the string. last may be end to refer to the last character of the string.
If first is less than zero then it is treated as if it was zero, and if last is greater
than or equal to the length of the string then it is treated as if it were end. If first
is greater than last then an empty string is returned.

The string repeat subcommand returns a string that is formed by repeating
the argument string for count times. The argument count must be an integer. If
count is zero or less the empty string is returned.

The string is alnum subcommand tests whether the argument string is an
alphanumeric string, i.e. a string with only alphanumeric characters. It returns
a decimal string with value 1 if the string is alphanumeric, and with value 0 it is
not.

10.8 Working with lists

The list is the basic TH1 data structure. A list is simply an ordered collection of
items, numbers, words, strings, or other lists. For instance, the following string
is a list with four items. The third item is a sub-list with two items:

{first second {a b} fourth}

TH1 has three core commands to work with lists:

list ?arg1 ?arg2? ...?

lindex list index

llength list

10.8. WORKING WITH LISTS 125

The list command returns a list comprising all the args. Braces and back-
slashes get added as necessary, so that the lindex command may be used on the
result to re-extract the original arguments. For example, the command

list a b {c d e} {f {g h}}

will return

a b {c d e} {f {g h}}

The lindex command treats argument list as a TH1 list and returns the element
with index number index from it. The argument index must be an integer
number and zero refers to the first element of the list. In extracting the element,
the lindex command observes the same rules concerning braces and quotes and
backslashes as the TH1 command interpreter; however, variable substitution
and command substitution do not occur. If index is negative or greater than or
equal to the number of elements in value, an empty string is returned.

The llength command treats argument list as a list and returns a decimal
string giving the number of elements in it.

126 CHAPTER 10. TH1 SCRIPTING LANGUAGE

Chapter 11

Chiselapp

Chiselapp is a website that is like github but hosts Fossil repositories. This way
you can have your repository on a internet accessible host. This works like
the Apache hosted repositories described in [par:Server-hosted] but Chiselapp
supplies the server and the host is on the internet not a local area network.

After you set up a FREE account you can then push your repository to them
and zap you are on the internet at:

https://chiselapp.com/user/<your account>/repository/<Project>

11.1 Create an account

Your first step is to create an account. The Chiselapp home page is:

Fill out the form with your information in my case I used my name and my
Gmail account to set it up and my account is jschimpf.

11.2 Repositories

You can create repositories on the site and then copy one of your local repos-
itories there. You have the choice of making public or private repositories.
Public are visible to anyone visiting the site and private are visible only to
you. In addition you do the standard Fossil assignment of users and privileges
so once someone accesses the repository they only can do what you allow.(
Figure:[fig:User-Configuration])

The rest of this section will show how I am putting the repository NULLMO-
DEM http://chiselapp.com/user/jschimpf/repository/NULMODEM/index
on to ChiselApp.

127

http://chiselapp.com

128 CHAPTER 11. CHISELAPP

11.2.1 Create Repository

The first step is to pick the option Create New Repository on your login page.
This will give you the following screen:

So I fill in the name as NULLMODEM and I put in my repository password but
what is Project Code ? Here you have to run Fossil to extract this information
from your repository as follows:

500 FOSSIL> fossil info -R NULMODEM.fossil

The form is now filled in and we can create the repository

and you get this:

11.2.2 Moving data

The next step is moving the repository on my disk to Chiselapp. This is done
via a push command in Fossil. I am doing this command in the directory where
NULMODEM.fossil lives so I don’t need to type a path. Note the command is
complete but I’m hiding my password when you do this type you password in
full where I have .

501 FOSSIL> fossil push https://jschimpf:<passwd>@chiselapp.com/user/jschimpf/repository/NULMODEM -R NULMODEM.fossil --once

11.3 Fixing Data

When you go to your new repository things are a bit messed up. You get:

Whoa where’s all my nice formatting and pointers to my documentation ? They
are hidden and you have to get them back:

Go to the timeline view:

And see the top check-in that is the initial empty check-in this is an artifact of
how Chiselapp creates your repository and you have to SHUN it

You will then be taken to another page where it will ask you if you really want
to do this and pick Shun again.

Not quite there yet, you have to log into the project (Remember your name and
password from Figure:[fig:Filled-in-form]) log in with this information and go
to the Admin->Configuration page. Put in the same information you had on
your local repository and ZAP your home page is back.

11.4 Final Fixes

The home page is now restored and we are ready to go.

11.5. SYNCING 129

The only problem now is the System Manual link doesn’t work. The original
was:

The fix is to change the link to just /doc/tip/DOCS/NULMODEM.pdf

11.5 Syncing

When you created the repository on ChiselApp you used this command:

fossil push https://jschimpf:<passwd>@chiselapp.com/user/jschimpf/repository/NULMODEM -R NULMODEM.fossil --once

when you did that the repository was created but it did not sync with your local
one. This is probably not a good idea as you want the ChiselApp repository
to stay up to date. If you leave off the –once then it will sync locally. If it isn’t
synching now and you want to reverse this at any time just type:

fossil push https://jschimpf:<passwd>@chiselapp.com/user/jschimpf/repository/NULMODEM -R NULMODEM.fossil

i.e. the command without the -once and you are syncing again.

11.6 Final Result

Now you can go to https://chiselapp.com/user/jschimpf/repository/NULMODEM
and view the repository and do what an anonymous user can do.

130 CHAPTER 11. CHISELAPP

Chapter 12

Advanced uses

Fossil can be used in various ways. It is flexible and can be adapted and
customized. Here are some examples for advanced usage.

12.1 Additional tables in the repository

It is possible to add more tables to the sqlite database that Fossil uses to store
the repository into. If you add tables having names starting with fx_ they will
not be not be touched and also not deleted during a rebuild of the database.

However, these tables won’t be synched and not be copied when cloning the
database. They are only meant for local data. Still, you could add those tables
in a server database and use the data to serve some specific content of the
repository to all users accessing the repository over the web frontend.

131

132 CHAPTER 12. ADVANCED USES

Chapter 13

What’s next ?

13.1 Learning more

This book so far has covered how to use the many features of Fossil and has,
I hope, interested you in using it. The question “what’s next” now comes up.
First go to the Fossil website. While there you can go to the Docs link and view
the list pages. There are all sorts of topics covered in depth. If that still doesn’t
help, you can join the Fossil forum and ask a question. I have found the forum
contributors, including members of the development team, to be very helpful
and have had my questions asked very quickly.

In the Fossil forum you will see suggestions for changes to be made to Fossil,
some of these are accepted very quickly and will appear within hours in the
Fossil source code. Others engender long discussions and it is interesting to
read the pros and cons of suggested changes.

Fossil is an evolving program but if you get a version that has all the features
you need you can stick with that version as long as you like. Going to a new
version though is simple and just requires a rebuild of your current repositories.
The developers have been very careful to preserve the basic structure so it is
easy and safe to switch versions.

13.2 Contributing

Finally if you wish to contribute to the project there are many things to do, often
triggered by forum comments.

133

http://www.fossil-scm.org/
https://www.fossil-scm.org/forum

134 CHAPTER 13. WHAT’S NEXT ?

Chapter 14

Fossil versions

Fossil evolves. When the seconds edition of this book was written in 2012, Fossil
had a version number of 1.22. Version 2.0 came in 2007. The current version is
2.23 (with a version 2.24 in the make). So, in the last 15 years since version 2.0
Fossil has seen 23 new minor versions. This is more than one release per year on
average! Here is a list of the noteable changes for the last few versions. For a full
change log, see https://fossil-scm.org/home/doc/trunk/www/changes.wiki.
The information below has been taken directly from that web page.

14.1 Changes for version 2.23 (2023-11-01)

• Added the ability to “close” forum threads, such that unprivileged users
may no longer respond to them. Only administrators can close threads
or respond to them by default, and the forum-close-policy setting can be
used to add that capability to moderators.

• Add the fossil all whatis command.
• The fossil status command and relevant UI pages now correctly report

files which were both renamed and edited as such.
• Show default value of settings that have a default in fossil help SET-

TING output.
• On timeline graphs, show closed check-ins using an X in the middle of

the node circle or box.
• New options for email notification: Get email only for the first post in

each new thread, and/or posts that are in reply to my posts.
• Fixed a regression bug introduced in version 2.22 that caused FTS5

searches to fail for terms containing non-ASCII characters.
• Improved defense-in-depth against malicious attack:

– When an attempted SQL injection attack is detected, return HTTP
result code 418, which can signal the web server to sanction the
attacking IP address.

135

https://fossil-scm.org/home/doc/trunk/www/changes.wiki
https://fossil-scm.org/home/help?cmd=forum-close-policy
https://fossil-scm.org/home/help?cmd=all
https://fossil-scm.org/home/help?cmd=status
https://fossil-scm.org/home/help?cmd=help
https://fossil-scm.org/home/help?cmd=help

136 CHAPTER 14. FOSSIL VERSIONS

– Better defense against cross-site request forgery (CSRF) attacks.
– Improvements to static analysis of source code (the codecheck1.c file

in the source tree).
• Enhanced the treeview file listings (example) by displaying file sizes and

adding the option to sort by file size.
• The fossil fts-config command now shows how much repository space is

used by the full-text index.
• Changing a setting to an empty string is now the same as deleting the

setting, in most cases. There are a few exceptions, indicated by the keep-
empty flag on the setting definition.

• The fossil branch list command can now filter branches that have/have
not been merged into the current branch.

• Improvements to interactions with remote repositories over SSH:
– Print the text of the SSH command that is run to do remote interaction,

for full disclosure to the operator.
– Add a PATH= argument to the fossil ui remote:/ and fossil patch

push/pull remote:. . . commands so that they work when the
“remote” machine is a Mac and the “fossil” executable is in the
$HOME/bin directory.

• Update built-in libraries SQLite, ZLib, Pikchr to their latest versions.
• Documentation enhancements and typo fixes.

14.2 Changes for version 2.22 (2023-05-31)

• Enhancements to the /timeline webpage:
1. Added the ft=TAG query parameter. In combination with d=Y it

shows all descendants of Y up to TAG
2. Enhanced the s=PATTERN (search) query parameter so that forum

post text is also searched when the vfx query parameter is used
3. Fixed the u=(user) query parameter so that it works with a= and

b=
4. Added the oldestfirst query parameter to show the events in

reverse order. Useful in combination with y=f and vfs and perhaps
also u= to show all forum events in chronological order

5. For the p=X and bt=Y query parameter combination, if Y is a tag
that identifies multiple check-ins, search backwards in time for Y
beginning at X

• Administrators can select to skip sending notifications about new forum
posts.

• If the value N is negative in --context N or -c N to the various diff
commands, then treat it as infinite and show the complete file content.

• The stock OCI container no longer includes BusyBox, thus no longer
needs to start as root to chroot that power away. That in turn frees us from
needing to build and install the container as root, since it no longer has to
create a private /dev tree inside the jail for Fossil’s use.

https://fossil-scm.org/home/help?cmd=/dir
https://fossil-scm.org/home/dir?type=tree&ci=trunk
https://fossil-scm.org/home/help?cmd=fts-config
https://fossil-scm.org/home/help?cmd=branch
https://fossil-scm.org/home/help?cmd=ui
https://fossil-scm.org/home/help?cmd=patch
https://fossil-scm.org/home/help?cmd=patch
https://fossil-scm.org/home/help?cmd=/timeline

14.3. CHANGES FOR VERSION 2.21 (2023-02-25) 137

• Added support for the trigram tokenizer for FTS5 search to enable search-
ing in Chinese.

• Comment lines (starting with a #) are now supported inside versioned
settings.

• Default permissions for anonymous users in new repositories are changed
to hz.

• The fossil status command now detects when a file used to be a symlink
and has been replaced by a regular file. (It previously checked for the
inverse case only.)

• The empty-dirs setting now reuses the same parser as the -glob settings
instead of its prior idiosyncratic parser, allowing quoted whitespace in
patterns.

• Enhancements to the /reports webpage:
1. The by-week, by-month, and by-year options now show an esti-

mated size of the current week, month, or year as a dashed box.
2. New sub-categories “Merge Check-ins” and “Non-Merge Check-ins”.

14.3 Changes for version 2.21 (2023-02-25)

• Users can request a password reset. This feature is disabledby default. Use
the new self-pw-reset property to enable it. New web pages /resetpw
and /reqpwreset added.

• Added the 8.3.7 command (together with fossil all repack) as a
convenient way to optimize the size of one or all of the repositories on a
system.

• Added the ability to put text descriptions on ticket report formats.
• Upgraded the test-find-pivot command to the merge-base com-

mand.
• The /chat page can now embed fossil-rendered views of wiki/markdown/pikchr

file attachments with the caveat that such embedding happens in an
iframe and thus does not inherit styles and such from the containing
browser window.

• Added the fossil all remote subcommand to fossil all.
• Passwords for remembered remote repositories are now stored as irre-

versible hashes rather than obscured clear-text, for improved security.
• Added the nossl and nocompress options to CGI.
• Updated the search infrastructure from FTS4 to FTS5.
• Added the /deltachain page for debugging purposes.
• Writes to the database are disabled by default if the HTTP request does

not come from the same origin. This enhancement is a defense in depth
measure only; it does not address any known vulnerabilities.

• Improvements to automatic detection and mitigation of attacks from
malicious robots.

https://fossil-scm.org/home/doc/trunk/www/settings.wiki#versionable
https://fossil-scm.org/home/doc/trunk/www/settings.wiki#versionable
https://fossil-scm.org/home/help?cmd=status
https://fossil-scm.org/home/help?cmd=empty-dirs
https://fossil-scm.org/home/help?cmd=/reports

138 CHAPTER 14. FOSSIL VERSIONS

14.4 Changes for version 2.20 (2022-11-16)

• Added the chat-timeline-user setting. If it is not an empty string,
then any changes that would appear on the timeline are announced in the
chat room.

• The /unsubscribe page now requests confirmation. Email notifica-
tions now contain only an “Unsubscribe” link, and not a link to sub-
scription management.

• Added the fossil branch lsh subcommand to list the most recently
modified branches.

• More elements of the /info page are now inside of an accordion.
• Replace the --dryrun flag with --dry-run in all commands which still

used the former name, for consistency.
• Rebuilt the stock Dockerfile to create a “from scratch” Busybox based

container image via an Alpine Linux intermediary. Added documenta-
tion describing how to customize, use, and run that container.

• Added “by hour of day” report to the /reports page.
• Improved correctness, usability, and efficiency for the case when values in

a TICKET’s column tend to be long and volatile.
• Fixed a bug introduced in 2.17 that prevented fossil clone
--unversioned from completing the retrieval of UV files from
the remote repository. While fixing that, enabled UV tracing out-
put with fossil clone --unversioned --verbose, making it
consonant with fossil uv sync --verbose.

14.5 Changes for version 2.19 (2022-07-21)

• On file listing pages, sort filenames using the “uintnocase” collating se-
quence, so that filenames that contains embedded integers sort in numeric
order even if they contain a different number of digits.

• Enhancements to the graph layout algorithm design to improve readability
and promote better situational awareness.

• Performance enhancement for the root:BRANCHNAME style of tag, ac-
complished using a Common Table Expression in the underlying SQL.

• Sort tag listings (command line and webpage) by taking numbers into
consideration so as to cater for tags that follow semantic versioning.

• On the wiki listings, omit by default wiki pages that are associated with
check-ins and branches.

• Add the new fossil describe command.
• Markdown subsystem extended with footnotes support.
• Add the new special name start:BRANCH to refer to the first check-in of

the branch.
• Support generated “mimetype” columns in the TICKET and TICK-

ETCHNG tables.
• Fix bug where remote-url is overwritten by the proxy setting dur-

https://fossil-scm.org/home/info/ea5afad31f478396

14.6. CHANGES FOR VERSION 2.18 (2022-02-23) 139

ing sync operation. Also require explicit “system” proxy setting to use
“http_proxy” environment variable.

• Reimplemented the /pikchrshow app to use a WebAssembly build of
pikchr so that it can render pikchrs on the client instead of requiring a
server round-trip.

• Add the email-listid setting. If set, it is used as the List-ID header for
all outbound notification emails.

• Add the --branch option to the fossil timeline command to re-
strict the displayed items to a specific branch.

• Add the --versions option to the fossil diff command to display
details about the compared versions into the patch header.

14.6 Changes for version 2.18 (2022-02-23)

• Added support for SSL/TLS server mode for commands like fossil
server and fossil http.

• The new fossil cherry-pick command is an alias for fossil
merge --cherrypick.

• Add new setting large-file-size. If the size of any file in a commit
exceeds this size, a warning is issued.

• Query parameter year=YYYY" is now accepted by the /timeline page.
• The fossil tar and fossil zip commands no longer sterilize the

manifest file.
• Futher improvement to diff alignment in cases that involve both edits and

indentation changes.
• Improvements to the Fossil Chat:

– The /chat page input options have been reworked again for better
cross-browser portability.

– When sending a chat message fails, it is no longer immediately lost
and sending may optionally be retried.

– A chat can now optionally embed attachments of certain types di-
rectly into message bodies via an iframe.

– Add the --as FILENAME option to the fossil chat send com-
mand.

– Added the fossil chat pull command, available to administra-
tors only, for backing up the chat conversation.

• Promote the fossil test-detach command into the fossil
detach command.

• For fossil pull with the --from-parent-project option, if no
URL is specified then use the last URL from the most recent prior fossil
pull --from-parent-project.

• Add options --project-name and -project-desc to the fossil
init command.

• The /ext page generates the SERVER_SOFTWARE environment variable
for clients.

140 CHAPTER 14. FOSSIL VERSIONS

• Fix the REQUEST_URI CGI variable such that it includes the query string.
This is how most other systems understand REQUEST_URI.

• Added the --transport-command option to fossil sync and simi-
lar.

14.7 Changes for version 2.17 (2021-10-09)

• Major improvements to the “diff” subsystem, including:
– Added new formatting options: --by, -b, --webpage,
--json, --tcl

– Partial-line matching for unified diffs
– Better partial-line matching for side-by-side diffs
– Buttons on web-based diffs to show more context
– Performance improvements

• The --branchcolor option on fossil commit and fossil
amend can now take the value auto to force Fossil to use its built-in
automatic color choosing algorithm.

• Fossil now autosyncs prior to running fossil open.
• Add the ticket-default-report setting which if set to the title of a

ticket report causes that ticket report to be displayed below the search box
in the /ticket page.

• The nc query parameter to the /timeline page causes all graph coloring
to be omitted.

• Improvements and bug fixes to the new fossil ui REMOTE feature so
that it works better on a wider variety of platforms.

• On the /wikiedit page, show the list of attachments for the current page
and list URLs suitable for pasting them into the page.

• Add the --no-http-compression option to fossil sync and simi-
lar.

• Print total payload bytes on a fossil sync when using the --verbose
option.

• Add the close, reopen, hide, and unhide subcommands to the
fossil branch command.

• The -p option to fossil branch list shows only private branches.
• The Markdown formatter now interprets the content of block HTML

markup (such as <table>) in most cases. Only content of <pre> and
<script> is passed through verbatim.

• The fossil wiki list command no longer lists “deleted” pages by
default. Use the new --all option to include deleted pages in the output.

• The fossil all git status] command only shows reports for the
subset of repositories that have a configured Git export.

• The /chat page configuration was reimplemented and provides new
options, including the ability for a repository administrator to extend the
selection of notification sounds using unversioned files.

• Chat now uses Fossil’s full complement of Markdown features, instead

14.7. CHANGES FOR VERSION 2.17 (2021-10-09) 141

of the prior small subset of markup it previously supported. This retroac-
tively applies to all chat messages, as they are markdown-processed when
they are sent instead of when they are saved.

• Added a chat message preview mode so messages can be previewed
before being sent. Similarly, added a per-message ability to view the raw
un-parsed message text.

• The hotkey to activate preview mode on the pages /wikiedit, /fileedit
and /pikchrshow was changed from ctrl-enter to shift-enter in order to
align with /chat’s new preview feature and related future changes.

142 CHAPTER 14. FOSSIL VERSIONS

Chapter 15

Revision history

Use the following table to track a history of this document’s revisions. An entry
should be made into this table for each version of the document.

Version Author Description Issue Date

0.1 js Initial Version 24-Apr-
2010

0.2 js Finishing up Single User Chapter 27-Apr-
2010

0.3 js Working on Introduction Chapter 30-Apr-
2010

0.4 js Adding multiuser chapter 1-May-
2010

0.5 mn Adding editorial corrections [ebf40b842a] 4-May-
2010

0.6 js Adding Command sections [e11399d575] 8-May-
2010

0.7 js English & spelling corrections 19-May-
2010

0.8 js Spelling fixes 30-May-
2010

0.9 ws Using Fossil merge [db6c734300] 2-Jun-2010
1.0 js/ws Put Fossil merge first in handling fork 3-Jun-2010
1.1 mn Fixes in multiple user chapter [e8770d3172] 4-Jun-2010
1.2 js Start advanced use chapter [2abc23dae5] 4-Jun-2010
1.3 mn English corrections Chapter 1 [8b324dc900] 5-Jun-2010
1.4 mn Sections 2.1 & 2.2 corrections [0b34cb6f04] 7-Jun-2010
1.5 js Move close leaf to adv use [2abc23dae5] 7-Jun-2010
1.6 js Convert Advanced chapter to forks and

branching
13-Jun-

2010

143

144 CHAPTER 15. REVISION HISTORY

Version Author Description Issue Date

1.7 js/tr Add note about IP port usage [a62efa8eba] 8-Jul-2010
1.71 javelin Check on mispelling section 1.1

[637d974f62]
15-Sep-

2011
1.72 anon Fix absolute path in image regs

[d54868853b]
15-Sep-

2011
1.73 anon Fix fossil create section 2.2.5 [36772d90a5] 15-Sep-

2011
1.74 anon Push/Pull described incorrectly

[1b930fced6]
15-Sep-

2011
1.75 arnel Commands might be changed [4aaf1f78bb] 15-Sep-

2011
2.0 FvD Updated and matched to fossil 1.25 March 2013
3.0 ctp Migrated from Lyx to Markdown Nov-2020
3.x tb Aim to cover fossil 2.18 . . . still much to do Feb-2022

	Foreword
	Why source control
	What is source control?
	Why version the files?
	How to get it

	Source control description
	Check out systems
	Merge systems
	Distributed systems
	Common terms

	Single user
	Introduction
	Using the Fossil command line application
	Creating a repository
	Introduction
	Create repository
	Connect repository
	Add and initial commit
	Fossil start up summary

	Set up user interface
	User interface summary

	Update repository
	Update summary

	Tickets
	Ticket summary

	Wiki
	Wiki formatting
	Wiki summary

	Multiple users
	Introduction
	Setup
	Remote server
	Local server
	Test the setup

	User accounts
	Multiple user operation
	Cloning
	Keeping the code in sync
	Complications
	Fixing the update file
	Fixing the merge file
	More on merge conflicts

	Sharing other changes than code
	Sharable content
	Synchronize the Fossil configuration

	Forks and branches
	Introduction
	Forks, branch and merge
	Marilyn’s actions
	Jim’s actions
	Fixing the fork
	Commands used

	Merge without fork
	Check-in attempt
	Update
	Commands used

	Branching
	Introduction
	Branch the repository
	Color setup
	Check out the branches
	Correcting errors in both
	Private branches
	Cherrypicking
	Commands used

	The Fossil user interface
	fossil ui
	Home
	The timeline
	Check-ins

	File
	The timeline of a single file

	Branches
	Tags
	Tickets
	Wiki
	Admin
	Login

	Fossil’s markup languages
	Plain text
	HTML
	Wiki markup
	Markdown
	Paragraphs
	Headings
	Links
	Font styling
	Lists
	Block quotes
	Literal/verbatim text
	Code blocks
	Tables
	HTML

	Links only

	Fossil configuration
	Ticket configuration
	The structure of tickets
	How tickets are displayed in the UI
	What can be customized

	Menu configuration
	Users configuration
	Skins configuration
	Configure email notifications
	Configure times and dates

	Fossil commands
	Introduction
	Basic
	help
	add
	rm or del
	rename or mv
	status
	changes
	extras
	revert
	update
	check-out or co
	undo
	diff
	gdiff
	ui
	server
	commit or ci

	Maintenance
	new
	clone
	open
	close
	version
	rebuild
	repack
	all
	push
	pull
	sync
	clean
	branch
	merge
	tag
	settings
	info
	publish

	Miscellaneous
	zip
	user
	finfo
	timeline
	wiki

	Advanced
	uv
	scrub
	search
	sha3sum
	configuration
	descendants

	Pikchr
	TH1 Scripting language
	Introduction to TH1
	TH1 is a Tcl-like language

	The Hello world program
	TH1 structure and syntax
	Datatypes
	Lists
	Commands
	Grouping & substitution
	Argument grouping
	Value substitutions
	Backslash escape substitution
	Variable substitution
	Command substitution
	Argument grouping revisited
	Summary
	Caveats

	TH1 expressions
	TH1 variables
	Working with variables
	Scalar variables and array variables
	Variable scope

	TH1 commands, scripts and program flow
	Commands revisited
	Scripts
	Command result codes
	Flow control commands
	Creating user defined commands
	Execution of user defined commands
	Special commands

	Working with strings
	Working with lists

	Chiselapp
	Create an account
	Repositories
	Create Repository
	Moving data

	Fixing Data
	Final Fixes
	Syncing
	Final Result

	Advanced uses
	Additional tables in the repository

	What’s next ?
	Learning more
	Contributing

	Fossil versions
	Changes for version 2.23 (2023-11-01)
	Changes for version 2.22 (2023-05-31)
	Changes for version 2.21 (2023-02-25)
	Changes for version 2.20 (2022-11-16)
	Changes for version 2.19 (2022-07-21)
	Changes for version 2.18 (2022-02-23)
	Changes for version 2.17 (2021-10-09)

	Revision history

